пусть время движения по течению - x. 3 ч 45 минут = 3 3/4 часа = 15/4 часа.
путь а-б:
по течению туристы двигались со скоростью 30+2 = 32 км/ч. за время x со скоростью 32 км/ч они прошли путь ≥ 56 км.
32x ≥ 56
x ≥ 56/32 = 7/4 = 1 ч 45 минут.
путь б-а:
против течения туристы плыли (15/4 - x) часов со скоростью 30-2 = 28 км/ч, и прошли путь ≥ 56 км.
(15/4 - x)28 ≥ 56
15/4 - x ≥ 2
-x ≥ -7/4
x ≤ 7/4 = 1 ч 45 минут
так как неравенства x ≥ 7/4 и x ≤ 7/4 имеют разные знаки, то x = 7/4 (можно показать это на числовой прямой).
Наибольшую площадь всегда занимает квадрат. Наглядно это видно из таблицы умножения - Пифагора (обычно ее печатают на обложке тетради). Площадь прямоугольника не связана напрямую с периметром. Поэтому, зная периметр, нельзя однозначно установить какие стороны у прямоугольника. Так как, находя площадь фигуры, мы оперируем значениями на плоскости (измерение проводим в квадратных единицах - метрах, сантиметрах и т.д.), периметр - это линейная характеристика фигуры ( длинна сторон - сумма отрезков, измеряется в сантиметрах, метрах и т.д.).
Например, для квадрата со стороной 5 см площадь 25 кв. см, периметр 20 см. Прямоугольник со сторонами 4 см и 6 см тоже имеет периметр 20 см, но площадь занимает меньше - 4*6=24 кв.см. Прямоугольник со сторонами 7 и 3 см тоже имеет периметр 20, однако его площадь еще меньше - это 21 кв.см. Для прямоугольника со сторонами 8 и 2 см: периметр 20 см, площадь - 16 кв.см. Для прямоугольника со сторонами 9 и 1 см: периметр тоже 20, площадь фигуры 9 кв. см. Чем больше разница между длинами сторон прямоугольника, тем меньше будет площадь такой фигуры.