М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Marik19782002
Marik19782002
28.02.2022 19:08 •  Математика

зделать задачу Фермер засіяв поле площею 36 га пшеницею та кукурудзою , площі під якими відносяться як 8,7:9,3. яка сільськогосподарська культура займає більшу площу і на скільки гектарів більше?

👇
Ответ:
lenyaalikin
lenyaalikin
28.02.2022

Пошаговое объяснение:

Пшеница - 8,7х

Кукуруза - 9,3х

8,7х + 9,3х = 36

18х = 36

х = 36:18

х = 2

Пшеница (8,7х) = 8,7 * 2 = 17,4 га

Кукуруза (9,3х) = 9,3 * 2 = 18,6 га

Больше площади занимает кукуруза, на:

18,6 - 17,4 = 1,2 га

4,4(50 оценок)
Открыть все ответы
Ответ:
vika14112006
vika14112006
28.02.2022

ответ: -2/3.

Пошаговое объяснение:

Положим x-π/3=t, тогда x=t+π/3 и при x⇒π/3 t⇒0. Тогда данный предел можно записать в виде lim [√3-sin(t)-√3*cos(t)]/sin(3*t/2), где t⇒0. Но так как √3-√3*cos(t)=√3*[1-cos(t)]=2*√3*sin²(t/2), то этот предел можно записать в виде lim[-sin(t)+2*√3*sin²(t/2)]/sin(3*t/2), где t⇒0. Но при t⇒0 бесконечно малые величины sin(t), sin²(t/2) и sin(3*t/2) можно заменить эквивалентными бесконечно малыми t, (t/2)²=t²/4 и 3*t/2 соответственно, так что данный предел примет вид 2/3*lim [-t+√3*t²/2]/t=2/3*lim(-t/t)+1/√3*lim(t²/t)=-2/3+1/√3*lim(t), где t⇒0. Отсюда искомый предел равен -2/3.

Проведём проверку по правилу Лопиталя:  [2*sin(x)-√3]'=2*cos(x), а [cos(3*x/2)]'=-3/2*sin(3*x/2). При x⇒π/3 первое выражение стремится к 1, а второе - к -3/2. Поэтому их отношение стремится к 1/(-3/2)=-2/3, что совпадает с полученным ответом.

4,4(1 оценок)
Ответ:
daimon708
daimon708
28.02.2022

ответ: -2/3.

Пошаговое объяснение:

Положим x-π/3=t, тогда x=t+π/3 и при x⇒π/3 t⇒0. Тогда данный предел можно записать в виде lim [√3-sin(t)-√3*cos(t)]/sin(3*t/2), где t⇒0. Но так как √3-√3*cos(t)=√3*[1-cos(t)]=2*√3*sin²(t/2), то этот предел можно записать в виде lim[-sin(t)+2*√3*sin²(t/2)]/sin(3*t/2), где t⇒0. Но при t⇒0 бесконечно малые величины sin(t), sin²(t/2) и sin(3*t/2) можно заменить эквивалентными бесконечно малыми t, (t/2)²=t²/4 и 3*t/2 соответственно, так что данный предел примет вид 2/3*lim [-t+√3*t²/2]/t=2/3*lim(-t/t)+1/√3*lim(t²/t)=-2/3+1/√3*lim(t), где t⇒0. Отсюда искомый предел равен -2/3.

Проведём проверку по правилу Лопиталя:  [2*sin(x)-√3]'=2*cos(x), а [cos(3*x/2)]'=-3/2*sin(3*x/2). При x⇒π/3 первое выражение стремится к 1, а второе - к -3/2. Поэтому их отношение стремится к 1/(-3/2)=-2/3, что совпадает с полученным ответом.

4,5(100 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ