очень надо! Коровы пасутся на двух полях. Одно — прямоугольное со сторонами 50 ми 200 м, другое — квадратное, такой же площади. Найди сторону второй площадки.
Искомое двузначное число представим в виде ( и - однозначные и неотрицательные, при этом ).
1). Пусть зачеркнули цифру из разряда десятков. Тогда из числа получилось число . Нам нужно выполнение следующего равенства:
Единственные однозначные натуральные решения: и .
Значит, число ⇒ .
2). Пусть зачеркнули цифру из разряда единиц. ⇒ . Уравнение составляется и решается по аналогии:
Откуда и .
Имеем второе подходящее решение: ⇒ .
Значит, двузначное число - это или , или .
Решение 2:
Можно было и кратким подбором решить, умножая все цифры на (умножаемая цифра - та, которая могла остаться после вычеркивания), пока не станут появляться трехзначные числа.
Нам нужно, чтобы в получившемся числе присутствовало умножаемое число (иначе как оно смогло бы потом остаться?):
Свойства умножения 1) a*b = b*a - переместительное свойство умножения 2) a*(b+c) = a*b + a*c - распределительное свойство умножения для суммы 3) a*(b-c) = a*b - a*c - распределительное свойство умножения для разности 4) a*(b*c) = (a*b)*c - сочетательное свойство - от перестановки множителей результат не изменяется. 5) a* 1 = a - при умножении на 1 - результат не изменяется - остается прежним. 6) a* 0 = 0 - при умножении на 0 - результат всегда равен 0. Правило умножения на 10 - приписать справа ОДИН ноль к числу 2*10 = 2 0
1) зачеркнули 7 из числа 17;
2) зачеркнули 8 из числа 85.
Решение 1:Искомое двузначное число представим в виде
(
и
- однозначные и неотрицательные, при этом
).
1). Пусть зачеркнули цифру из разряда десятков. Тогда из числа
получилось число
. Нам нужно выполнение следующего равенства:
Единственные однозначные натуральные решения:
и
.
Значит, число
⇒
.
2). Пусть зачеркнули цифру из разряда единиц.
⇒
. Уравнение составляется и решается по аналогии:
Откуда
и
.
Имеем второе подходящее решение:
⇒
.
Значит, двузначное число - это или
, или
.
Решение 2:Можно было и кратким подбором решить, умножая все цифры на
(умножаемая цифра - та, которая могла остаться после вычеркивания), пока не станут появляться трехзначные числа.
Нам нужно, чтобы в получившемся числе присутствовало умножаемое число (иначе как оно смогло бы потом остаться?):
Получаем те же самые два решения:
и
.
Задача решена!