смотри, вот то значение, которое больше, в данном случае это будет 4см и 5мм, вот это пусть будет ширина прямоугольника. то есть рисуем палочку, длина которой будет 4см 5 мм. так, теперь рисуем другую палочку, которая отходит справа от ширины. ну, вот например прямоугольник. стороны справа и слева, то есть палочки, которые написаны справа и слева, они будут 2 см 5 мм. а палочки, которые сверху и снизу, в устройстве прямоугольника, они будут 4см 5 мм. просто построить прямоугольник, его правая и левая стороны будут 2см 5мм, а верхние и нижние стороны будут 4см 5мм. а формула периметра: (а+в) х 2. надо прибавить 2см 5мм к 4см 5мм и умножить на два. таким образом у нас получается: 14
мандарины по 544 апельсины 392
Пошаговое объяснение:
х мандарины, у-апельсины
Составляем систему (2 уравнения)
1)3х + 4у = 3200
2)3у+1000=4х
Выражаем у из каждого уравнения
1)4у = 3200 - 3х
2)3у = 4х-1000
1)у = 800 - 0.75х
2)у = 4/3х - 1000/3
Приравниваем уравнения 1 и 2
800-0.75х= 4/3х - 1000/3
3/4x + 4/3x = 3400/3 (800 + 1000/3 звели к общему знаменателю)
25/12x = 3400/3 (4/3x и 3/4x звели к общему знаменателю )
25x= 13600 (умножил на 12 чтобы не было дроби)
x= 544
Из уравнения 1) 3х + 4у = 3200
выражаем у:
4у= 3200 - (3* 544)
4у= 1568
у = 392
Проверка уравнения 2) 3у+1000 = 4х
3*392 + 1000 = 4*544
1176+1000= 2176
Пусть Х - количество экскурантов, У - количество лодок.
Из условия задачи известно, что если бы в каждую лодку село по 6 человек , то не хватило бы места для 4 человек, т.е.:
Х - 6У = 4
Также известно, что если бы в лодку село по 8 человек ,то одна лодка оказалась бы свободной, т.е:
Х/8 = У-1
Составляем систему из двух уравнений:
Х - 6У = 4
Х/8 = У-1
Выразим из первого уравнения Х:
Х = 4 + 6У
А второе уравнение домножим на 8:
Х/8 = У-1
Х = 8*(У-1)
Вместо Х подставляем выражение 4 + 6У, получим:
4 + 6У = 8*(У-1)
4 + 6У = 8У -8
8У-6У = 4 + 8
2У = 12
У = 6 (шт) - количество лодок было
Найдем количество экскурсантов:
Х = 4 + 6У
Х = 4 + 6*6
Х = 4 + 36
Х = 40 - количество экскурсантов
ответ: экскурсантов было 40человек, а лодок 6 штук.