1 дм² = 100 см²
12 000 см² и 12 дм²
12 дм² = 12 * 100 = 1 200 см² ⇒ 12 000 см² > 12 дм²
1 км = 1 000 м
12 км и 1 200 м:
12 км = 12 * 1 000 = 12 000 м ⇒ 12 км > 1 200 м
1 дм³ = 1 000 см³
12 000 см³ и 12 дм³:
12 дм³ = 12 * 1 000 = 12 000 см³ ⇒ 12 000 см³ = 12 дм³
1 дм = 100 мм
12 000 мм и 1 200 дм:
1 200 дм = 1 200 * 100 = 120 000 мм ⇒ 12 000 мм < 1 200 дм
1 т = 1 000 кг; 1 ц = 100 кг
1 т 2 ц и 1 200 кг:
1 т 2 ц = 1 * 1 000 + 2 * 100 = 1 200 кг ⇒ 1 т 2 ц = 1 200 кг
Пошаговое объяснение:
y'' +2y' = 3ex(cos(x)+sin(x))
Решение уравнения будем искать в виде y = erx с калькулятора. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
r2 +2 r + 0 = 0
D = 22 - 4 • 1 • 0 = 4
Корни характеристического уравнения:
r1 = 0
r2 = -2
Следовательно, фундаментальную систему решений составляют функции:
Общее решение однородного уравнения имеет вид:
Рассмотрим правую часть:
f(x) = 3•ex•(cos(x)+sin(x))
Поиск частного решения.
Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида:
R(x) = eαx(P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) - некоторые полиномы
имеет частное решение
y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))
где k - кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) - полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).
Здесь P(x) = 0, Q(x) = 0, α = 1, β = 1.
Следовательно, число α + βi = 1 + 1i не является корнем характеристического уравнения .
Уравнение имеет частное решение вида:
y* = ex(Acos(x) + Bsin(x))
Вычисляем производные:
y' = ex((B-A)•sin(x)+(A+B)•cos(x))
y'' = 2•ex(B•cos(x)-A•sin(x))
которые подставляем в исходное дифференциальное уравнение:
y'' + 2y' = (2•ex(B•cos(x)-A•sin(x))) + 2(ex((B-A)•sin(x)+(A+B)•cos(x))) = 3•ex•(cos(x)+sin(x))
или
-4•A•ex•sin(x)+2•A•ex•cos(x)+2•B•ex•sin(x)+4•B•ex•cos(x) = 3•ex•(cos(x)+sin(x))
Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:
-4A + 2B = 3
2A + 4B = 3
Решая ее методом обратной матрицы, находим:
A = -3/10;B = 9/10;
Частное решение имеет вид:
y* = ex(-3/10cos(x) + 9/10sin(x))
Таким образом, общее решение дифференциального уравнения имеет вид:
10 (см)
Пошаговое объяснение:
P=50см
AB:BC:AC=2:3:5
Пусть AB=2x, тогда BC=3x;AC=5x.
P=AB+BC+AC=50
2x+3x+5x=50
10x=50
x=5
2*5=10-найменьша сторона
3*5=15-середня сторона
5*5=25-найбильша сторона