ответ: У Пети 65 шариков; у Вани 35 шариков; у Толи 20 шариков.
Пошаговое объяснение: Решаем задачу в обратном порядке:
(Толя дал Пети и Ване столько, сколько у них стало)
40÷2=20 (шариков) было у Пети, перед Толиным дележём.
40÷2=20 (шариков) было у Вани, перед Толиным дележём.
40+20+20=80 (шариков) было у Толи, перед Толиным дележём.
(Ваня дал Толе и Пете столько шариков, сколько у них стало)
80÷2=40 (шариков) было у Толи, перед Ваниным дележём.
20÷2=10 (шариков) было у Пети, перед Ваниным дележём.
20+40+10=70 (шариков) было у Вани, перед Ваниным дележём.
(Сначала Петя дал Ване и Толе столько шариков, сколько у них было)
70÷2=35 (шариков) было у Вани вначале.
40÷2=20 (шариков) было у Толи вначале.
10+35+20=65 (шариков) было у Пети вначале.
Числа разделяются на классы. Целые положительные числа - N = {1, 2, 3, … } - составляют множество натуральных чисел. Зачастую и 0 считают натуральным числом.
Множество целых чисел Z включает в себя все натуральные числа, число 0 и все натуральные числа, взятые со знаком минус: Z = {0, 1, -1, 2, -2, …}.
Каждое рациональное число x можно задать парой целых чисел (m, n), где m является числителем, n - знаменателем числа: x = m/n. Эквивалентным представлением рационального числа является его задание в виде числа, записанного в позиционной десятичной системе счисления, где дробная часть числа может быть конечной или бесконечной периодической дробью. Например, число x = 1/3 = 0,(3) представляется бесконечной периодической дробью.
Числа, задаваемые бесконечными непериодическими дробями, называются иррациональными числами. Таковыми являются, например, все числа вида vp, где p - простое число. Иррациональными являются известные всем числа и e.
Объединение множеств целых, рациональных и иррациональных чисел составляет множество вещественных чисел. Геометрическим образом множества вещественных чисел является прямая линия - вещественная ось, где каждой точке оси соответствует некоторое вещественное число, так что вещественные числа плотно и непрерывно заполняют всю вещественную ось.
Плоскость представляет геометрический образ множества комплексных чисел, где вводятся уже две оси - вещественная и мнимая. Каждое комплексное число, задаваемое парой вещественных чисел, представимо в виде: x = a+b*i, где a и b - вещественные числа, которые можно рассматривать как декартовы координаты числа на плоскости.
x
2
+(y−1)
2
=4
x
2
+(y−1)
2
=2
2
(0;1)-координаты центра, R=2
A(2;1) \begin{gathered}2^2+(1-1)^2=4\\4+0=4\\4=4\end{gathered}
2
2
+(1−1)
2
=4
4+0=4
4=4
А-принадлежит
B(0;3) \begin{gathered}0^2+(3-1)^2=4\\2^2=4\\4=4\end{gathered}
0
2
+(3−1)
2
=4
2
2
=4
4=4
В-принадлежит
С(5;0) \begin{gathered}5^2+(0-1)^2=4\\25+1=4\\26\neq4\end{gathered}
5
2
+(0−1)
2
=4
25+1=4
26
=4
С - не принадлежит
Вектор АВ={0-2;3-1}
AB={-2;2}
AB={-1;1}
составляем уравнение прямой АВ:
(х-2)/(-1)=(у-1)/1
х-2=-(у-1)
х-2=-у+1
х+у-2-1=0
х+у-3=0 - общий вид уравнения прямой
или, если угодно, канонический вид: у=-х+3