М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
liliya134
liliya134
11.12.2021 10:25 •  Математика

Петя, Ваня и Миша собирали грибы. Петя собрал 4/15 всех грибов, Ваня - 5/6 остальных грибов, а Миша - 22 гриба. Сколько всего грибов собрали Петя, Ваня и Миша?

👇
Ответ:
алисон2
алисон2
11.12.2021

231/10 или 23      1/10

Пошаговое объяснение:

4,7(95 оценок)
Открыть все ответы
Ответ:
nik19991
nik19991
11.12.2021

Приведем примерный алгоритм получения необходимых данных.

1.Нахождение области определения функции

Определение интервалов, на которых функция существует.

!!! Очень подробно об области определения функций и примеры нахождения области определения тут.

2.Нули функции

Для вычисления нулей функции, необходимо приравнять заданную функцию к нулю и решить полученное уравнение. На графике это точки пересечения с осью ОХ.

3.Четность, нечетность функции

Функция четная, если y(-x) = y(x). Функция нечетная, если y(-x) = -y(x). Если функция четная – график функции симметричен относительно оси ординат (OY). Если функция нечетная – график функции симметричен относительно начала координат.  

4.Промежутки знакопостоянства

Расстановка знаков на каждом из интервалов области определения. Функция положительна на интервале - график расположен выше оси абсцисс. Функция отрицательна - график ниже оси абсцисс.  

5. Промежутки возрастания и убывания функции.

Для определения вычисляем первую производную, приравниваем ее к нулю. Полученные нули и точки области определения выносим на числовую прямую. Для каждого интервала определяем знак производной. Производная положительна - график функции возрастает, отрицательна - убывает.

6. Выпуклость, вогнутость.

Вычисляем вторую производную. Находим значения, в которых вторая производная равна нулю или не существует. Вторая производная положительна - график функции выпукл вверх. Отрицательна - график функции выпукл вниз.  

7. Наклонные асимптоты.

 

Пример исследования функции и построения графика №1

Исследовать функцию средствами дифференциального исчисления и построить ее график.

4,4(67 оценок)
Ответ:
alekseykraynov
alekseykraynov
11.12.2021

ну, в первой загадке вы опечатались в условии, похоже:

должно быть так: "через точку а к окружности w (0,r)проведены". а то выходит, что а принадлежит окружности, при этом через нее аж две касательные

 

ну а доказывать, полагаю, надо через равенство треугольников, образующихся при соединении этой точки а с центром окружности и радиусов, проведенных к точкам касания в и с.

 

треугольники аво и асо:

во-первых, прямоугольные. (углы в и с прямые, ибо радиус к точке касания перперндикулярен касательной);

во-вторых, имеют равные катеты ов и ос (длина их - радиус окружности);

в-третьих - у них равные гипотенузы (она у них общая, это отрезок ао);

 

значит они равны (по углу и двум сторонам)

следовательно ав=ас.

 

согласны?

 

 

 

а вот что думаю про вторую :

 

раз угол прямой, то, соединив отрезками точки касания с центром окружности, получим симпатичный квадрат, диагональ которого - та самая хорда.

 

ну, а у квадрата диагонали равны и перпендикулярны друг другую.

значит проводим вторую диагональ (она как раз из центра к хорде под прямым углом пойдет) и сразу становится видно, что расстояние от хорды то центра окружности окружности - ровно половина диагонали, т.е.

40/2 = 20см

 

ура?

 

))

4,5(44 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ