100
Пошаговое объяснение:
Пусть мандарины раздавали детям, которых было х. Тогда, если раздавать их детям по 5 мандаринов каждому, то не хватит 4 мандаринов, а значит было мандаринов 5х - 4. В случае, если раздать по 4 мандарина, то в пакете останется 16 мандаринов: 4х + 16.
В двух случаях количество мандаринов равное:
5х - 4 = 4х + 16.
В правой части собираются слагаемые с неизвестной величиной, а в левой - свободные члены:
5х - 4х = 16 + 4.
х = 20 - детей получали мандарины.
В пакете было 4 * 20 + 16 = 100 мандаринов.
100
Пошаговое объяснение:
Пусть мандарины раздавали детям, которых было х. Тогда, если раздавать их детям по 5 мандаринов каждому, то не хватит 4 мандаринов, а значит было мандаринов 5х - 4. В случае, если раздать по 4 мандарина, то в пакете останется 16 мандаринов: 4х + 16.
В двух случаях количество мандаринов равное:
5х - 4 = 4х + 16.
В правой части собираются слагаемые с неизвестной величиной, а в левой - свободные члены:
5х - 4х = 16 + 4.
х = 20 - детей получали мандарины.
В пакете было 4 * 20 + 16 = 100 мандаринов.
Вероятность того, что только одна деталь первого сорта = 0,0158;
Вероятность того, что хотя бы одна деталь первого сорта = 0,9986.
Пошаговое объяснение:
1. Производство одной детали - одно не зависимое испытание, в котором вероятность того, что делать окажется первого сорта (событие А) Р (А) = 2/3.
Изготовление 6 деталей - 6 независимых испытаний. Нам нужно вычислить вероятность того, что из 6 испытаний, событие А случится один раз. Здесь применима формула Бернулли:
P{k,n}=C из n по k * p^k * q^{n-k}, где q = 1 - p.
Получаем:
(6!/(1!*5!)) * 2/3 * (1/3)^5 = (720/(1*120)) * 0,667 * 0,004 = 0,0158
2. Хотя бы одна первого сорта - здесь проще. Сначала посчитаем вероятность того, что все 6 окажутся плохими (1/3)^6 = 0,0014
Варианта два: либо плохая, либо хорошая. Получается если НЕ все 6 плохие, то хотя бы одна хорошая:
1 - 0,0014 = 0,9986