1/3; 2/5; 5/6; 7/5; 1 2/3; 3 6/6.
Вступление
Пусть в прямоугольной трапеции ABCD, AB и CD основания, а ∠D прямой. Тогда AD меньшая боковая сторона (как расстояние между параллельными отрезками AB и CD), то есть AD=16см. По построению DC большое основание, поэтому по условию DC=31см. Острые углы при большом основании, ∠C=45° т.к. ∠D=90°.
H∈DC, BH⊥DC ⇒ BH=AD=16см.
В прямоугольном ΔBHC:
∠C=45°, ∠H=90° ⇒ ∠B=45°⇒ HC=BH=19см.
DH=DC-HC=31-16=15см.
В четырёхугольнике ABHD:
∠D=90°, ∠H=90° и ∠A=90°, ∠B=90° т.к. AB║DH, ведь H∈DC и AB║DC.
Получается ABHD - прямоугольник, поэтому AB=HD, HD=15см ⇒ AB=15см.
AB мень. осн. т.к. CD - большее.
Меньшее основание равно 15см.
Проце́нт — одна сотая доля. Обозначается знаком «%». Используется для обозначения доли чего-либо по отношению к целому. Например, 17 % от 500 кг означает 17 частей по 5 кг каждая, то есть 85 кг.
Правила набора
В тексте знак процента используется только при числах в цифровой форме, от которых при наборе отделяется неразрывным пробелом (доход 67 %), кроме случаев, когда знак процента используется для сокращённой записи сложных слов, образованных при числительного и прилагательного процентный. Например: 20%-я сметана (означает двадцатипроцентная сметана), 10%-й раствор, 20%-му раствору, но жирность сметаны составляет 20 %, раствор концентрацией 10 % и т. п.
Это правило набора введено в действие в 1982 году нормативным документом ГОСТ 8.417—81 (впоследствии заменённым на ГОСТ 8.417—2002); ранее нормой было не отделять знак процента пробелом от предшествующей цифры. В настоящее время правило отбивки знака процента не является общепризнанным. До сих пор многие российские издательства не следуют рекомендациям ГОСТ 8.417—2002 и по-прежнему придерживаются традиционных правил набора, то есть при наборе знак процента от предшествующего числа не отделяется.
Разговорное употребление
«Работать за проценты» — работать за вознаграждение, исчисляемое в зависимости от прибыли или оборота.«На все сто (процентов)» — прекрасный во всех отношениях; всецело, полностью, целиком[1].«Процентщик» — человек, ссужающий деньги под большие проценты, ростовщик.
Сравнение величин в процентах
Иногда бывает удобным сравнивать две величины не по разности их значений, а в процентах. Например, цену двух товаров сравнивать не в рублях, а оценивать, насколько цена одного товара больше или меньше цены другого в процентах. Если сравнение по разности вполне однозначно, то есть всегда можно найти, насколько одна величина больше или меньше другой, то для сравнения в процентах нужно указывать, относительно какой величины вычисляется процент. Такое указание, впрочем, необязательно в том случае, когда говорят, что одна величина больше другой на число процентов, превышающее 100. В этом случае остается только одна возможность вычисления процента, а именно деление разности на меньшее из двух чисел с последующим умножением результата на 100.
Процент – это сотая часть единицы. Запись 1% означает 0.01. Существует три основных типа задач на проценты:
Задача 1. Найти указанный процент от заданного числа. Заданное число умножается на указанное число процентов, а затем произведение делится на 100.
П р и м е р . Вклад в банке имеет годовой прирост 6%. Начальная сумма вклада равнялась 10000 руб. На сколько возрастёт сумма вклада в конце года? Р е ш е н и е : 10000 · 6 : 100 = 600 руб.
Задача 2. Найти число по заданному другому числу и его величине в процентах от искомого числа. Заданное число делится на его процентное выражение и результат умножается на 100.
П р и м е р . Зарплата в январе равнялась 1500 руб., что составило 7.5% от годовой зарплаты. Какова была годовая зарплата?
Р е ш е н и е : 1500 : 7.5 · 100 = 20000 руб.
Задача 3. Найти процентное выражение одного числа от другого.Первое число делится на второе и результат умножается на 100.П р и м е р . Завод произвёл за год 40000 автомобилей, а в следующем году – только 36000 автомобилей. Сколько процентов это составило по отношению к выпуску предыдущего года?
Р е ш е н и е : 36000 : 40000 · 100 = 90% .
Пошаговое объяснение:
тут на 2 страницы
1. (- 2,5 + 2 1/3) * (- 5 1/7) + 1 1/3 : (- 5,6) = 5/7
1) - 2,5 + 2 1/3 = - 2 5/10 + 2 1/3 = - 2 1/2 + 2 1/3 = - 2 3/6 + 2 2/6 = - 1/6
2) - 1/6 * (-5 1/7) = 1/6 * 36/7 = 6/7
3) 1 1/3 : (- 5,6) = 1 1/3 : (- 5 6/10) = - 1 1/3 : 5 3/5 = - 4/3 : 28/3 = - 4/3 * 3/28 = - 4/28 = - 1/7
4) 6/7 - 1/7 = 5/7
2. - 0,3x + 0,9 = - 4,2;
- 0,3x = - 4,2 - 0,9;
- 0,3 = - 5,1;
x = - 5,1 : (- 0,3);
x = 17.
ответ. 17.
3. - 0,25x + 0.8 = 1,3;
- 0,25x = 1,3 - 0,8;
- 0,25x = 0,5;
x = 0,5 : (- 0,25);
x = - 2.
ответ. - 2.