Для того, чтобы найти наименьший положительный период функции y = sin(x / 2) воспользуемся тем, что для функции y = sinх наименьшим положительным периодом является Т = 2 * π. Это означает, что при наименьшем Т = 2 * π выполняется равенство sin(х + Т) = sinх. Предположим, что для данной тригонометрической функции y = sin(x / 2) угол Т1 является наименьшим положительным периодом. Тогда, sin((x + Т1) / 2) = sin(x / 2). Имеем (x + Т1) / 2 = x / 2 + 2 * π или Т1 / 2 = 2 * π, откуда Т1 = (2 * π) * 2 = 4 * π.
Для того, чтобы найти наименьший положительный период функции y = tg(2 * x) воспользуемся тем, что для функции y = tgx наименьшим положительным периодом является Т = π. Это означает, что при наименьшем Т = π выполняется равенство tg(х + Т) = tgх. Предположим, что для данной тригонометрической функции y = tg(2 * x) угол Т2 является наименьшим положительным периодом. Тогда, tg(2 * (x + Т2)) = tg(2 * x). Имеем 2 * (x + Т2) = 2 * x + π или 2 * Т2 = π, откуда Т2 = π/2.
1) 80-30=50 м/мин скорость младшего брата 2) 50*6=300 м расстояние между младшем братом и старшим 3) 300:30=10 минут время за которое дошел до школы младший брат
Пусть х минут, время за которое старший брат доходит до школы. Тогда расстояние до школы 80х метров. Время за которое младший брат доходит до школы (х+6) минут. Скорость младшего брата (80-30) м/ мин, а расстояние (х+6)(80-30) метров. Составим и решим уравнение: 80х=(х+6)(80-30) 80х=(х+6)*50 80х=50х+300 80х-50х=300 30х=300 х=300:30 х=10 минут - старший брат дошел до школы
xвторое число 7xпервое число 9+xтретье число (x+7x+9+x):3=24,3 9x+9=24,3*3 9x+9=72,9 9x=72,9-9 9x=63,9 x=63,9:9 x=7,1 второе число 7,1*7=49,7 первое число 7,1+9=16,1 третье число
ответ:сам попросил)
Пошаговое объяснение:
Для того, чтобы найти наименьший положительный период функции y = sin(x / 2) воспользуемся тем, что для функции y = sinх наименьшим положительным периодом является Т = 2 * π. Это означает, что при наименьшем Т = 2 * π выполняется равенство sin(х + Т) = sinх. Предположим, что для данной тригонометрической функции y = sin(x / 2) угол Т1 является наименьшим положительным периодом. Тогда, sin((x + Т1) / 2) = sin(x / 2). Имеем (x + Т1) / 2 = x / 2 + 2 * π или Т1 / 2 = 2 * π, откуда Т1 = (2 * π) * 2 = 4 * π.
Для того, чтобы найти наименьший положительный период функции y = tg(2 * x) воспользуемся тем, что для функции y = tgx наименьшим положительным периодом является Т = π. Это означает, что при наименьшем Т = π выполняется равенство tg(х + Т) = tgх. Предположим, что для данной тригонометрической функции y = tg(2 * x) угол Т2 является наименьшим положительным периодом. Тогда, tg(2 * (x + Т2)) = tg(2 * x). Имеем 2 * (x + Т2) = 2 * x + π или 2 * Т2 = π, откуда Т2 = π/2.