М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
SizovMarina
SizovMarina
16.09.2020 20:30 •  Математика

Произведение двух чисел равно 120,25. Если один из множителей увеличить на 2,5, а другой оставить без изменения, то произведение будет равно 212,75. Найди эти числа. Большее число равно- ?

Меньшее число равно- ?
.

👇
Ответ:
IgnatBakaev
IgnatBakaev
16.09.2020

Выполняя условия, составляем систему уравнений.

Решение и ответ на фото


Произведение двух чисел равно 120,25. Если один из множителей увеличить на 2,5, а другой оставить бе
4,7(95 оценок)
Ответ:
янннак
янннак
16.09.2020

Большее число равно 37.

Меньшее число равно  3,25.

Пошаговое объяснение:

xy=120.25;        (1)

(x+2.5)*y=212.75;

xy+2.5y=212.75;   (2)

Вычтем из (2)   (1)

ху+2,5у-ху=212,75-120,25.

2,5у=92,5.

y=92.5/2.5=37.

х=120,25/37=3,25.

проверим:

(3,25+2,5)*37=5,75*37=212,75. Все верно!

4,4(22 оценок)
Открыть все ответы
Ответ:
bonipasol1
bonipasol1
16.09.2020

984

Пошаговое объяснение:

Самое большое трёхзначное число равно 999. Но, в в задании есть условие, что цифры числа должны быть различными. Поэтому, числа больше 990 нам не подходят.

Значит, число сотен искомого числа равно 9, число десятков равно 8. Ищем число единиц.

Чтобы число делилось на 6, надо, чтобы оно делилось на 2 (т.е. было чётным) и делилось на 3 одновременно. Чтобы число делилось на 3, сумма его цифр должна делиться на 3.

984 - подходит под все условия задачи.

984 - четное, т.к. оканчивается на чётную цифру (4) и сумма цифр числа делится на 3 (9+8+4=21, 21:3=7).

4,7(78 оценок)
Ответ:

(2;1+\sqrt{2})\cup(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty)

Пошаговое объяснение:

ОДЗ логарифмов: x > 0, x ≠ 1, x > 2, x ≠ 3 ⇒ x > 2, x ≠ 3

Пусть \log_{x}{(x-2)}=t. Тогда \log_{x-2}{x}=\dfrac{1}{\log_{x}{(x-2)}}=\dfrac{1}{t}:

\dfrac{4t+\frac{1}{t}-4}{4t+\frac{2}{t}+6}\geq 0. Заметим, что t ≠ 0, так как это значение достигается только при x = 3 (x - 2 = x⁰ = 1 ⇔ x = 3). Но при x = 3 основание логарифма \log_{x-2}{x} равно 1, что не удовлетворяет ОДЗ. Значит, домножим обе части дроби на t:

\dfrac{4t^2-4t+1}{4t^2+6t+2}\geq 0|\cdot 2\\\dfrac{4t^2-4t+1}{2t^2+3t+1}\geq 0\\\dfrac{(2t-1)^2}{(t+1)(2t+1)}\geq 0

Решим методом интервалов:

 +      -    +     +

----o----o----*---->

   -1    -¹/₂   ¹/₂  

t\in(-\infty;-1)\cup(-\frac{1}{2};+\infty)

\displaystyle\left [ {{\log_{x}{(x-2)}-\frac{1}{2}}} \right.

Заметим, что по ОДЗ x > 2, то есть основание логарифма всегда больше 1. Значит, на ОДЗ неравенства равносильны:

\displaystyle \left [ {{x-2x^{-\frac{1}{2}}}} \right. \left [ {{x-2\frac{1}{\sqrt{x}}}} \right. \left [ {{x^2-2x-10}} \right.

Первое неравенство имеет решение (с учётом ОДЗ) x\in(2;1+\sqrt{2})

Второе неравенство раскладывается на множители:

(\sqrt{x}+1)(\sqrt{x}^2-\sqrt{x}-1)0|:(\sqrt{x}+1)0\\\sqrt{x}^2-\sqrt{x}-10

Нули получившегося неравенства: \displaystyle \left [ {{\sqrt{x}=\frac{1-\sqrt{5}}{2}

C учётом ОДЗ получаем, что в данном случае x\in(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty) (левая граница меньше правой, так как √5 < 3).

Объединим промежутки. Сравним правую границу первого неравенства и левую границу второго. Сравним эти числа относительно 2,5:

1+\sqrt{2}\vee 2{,}5\Leftrightarrow\sqrt{2}\vee1{,}5\Leftrightarrow 24\\1+\sqrt{2}

Тогда промежутки не пересекаются, итоговый ответ: x\in(2;1+\sqrt{2})\cup(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty)

4,7(47 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ