Числа 2²=4, 3²=9, 5²=25, 7²=49, 11²=121 имеют ровно три различных натуральных делителя. Например, число 2²=4 делится на 1, 2 и 4, аналогично для остальных чисел.Так как простых чисел бесконечно много, мы можем для любого простого p рассмотреть число p². Это число также имеет ровно 3 различных натуральных делителя — 1, p и p². Значит, чисел, имеющих 3 различных натуральных делителя, также бесконечно много.Замечу, что при решении задачи мы предполагаем, что нужно найти натуральные числа, которые имеют ровно 3 различных натуральных делителя. Если требуется указать целые числа, которые имеют ровно 3 различных целых делителя, то задача не имеет решения. Если n=1,-1, то делителей два — 1 и -1. Если n по модулю больше 1, то делителей минимум четыре — 1, -1, n, -n.Подробнее - на -
Числа 2²=4, 3²=9, 5²=25, 7²=49, 11²=121 имеют ровно три различных натуральных делителя. Например, число 2²=4 делится на 1, 2 и 4, аналогично для остальных чисел.
Так как простых чисел бесконечно много, мы можем для любого простого p рассмотреть число p². Это число также имеет ровно 3 различных натуральных делителя — 1, p и p². Значит, чисел, имеющих 3 различных натуральных делителя, также бесконечно много.
Замечу, что при решении задачи мы предполагаем, что нужно найти натуральные числа, которые имеют ровно 3 различных натуральных делителя. Если требуется указать целые числа, которые имеют ровно 3 различных целых делителя, то задача не имеет решения. Если n=1,-1, то делителей два — 1 и -1. Если n по модулю больше 1, то делителей минимум четыре — 1, -1, n, -n.
Пошаговое объяснение:
3,8/(0,1x+3) = 10/11
10*(0,1x + 3) = 11 * 3,8
x + 30 = 41,8
x = 41,8 - 30
x = 11,8