М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
prepelitsa
prepelitsa
22.03.2020 19:46 •  Математика

Покажите, что если равны накрест лежащие углы, то сумма односторонних углов равна
180°. Верно ли обратное утверждение? То есть,
если сумма односторонних углов равна 180°, то
равны накрест лежащие углы.
Докажите, что если при пересечении двух​

👇
Ответ:
asd000fgh000
asd000fgh000
22.03.2020
Добрый день! Давайте разберем ваш вопрос подробно.

У нас есть две пересекающиеся прямые AB и CD:

A ----------------------- B
\ /
\ /
\ /
\ /
\ /
\ /
\ /
\ /
\ /
\ /
\ /
\ /
C
\
D

Мы знаем, что накрест лежащие углы - это углы, расположенные на разных сторонах пересекающихся прямых. Обозначим эти углы как ∠ACD и ∠BCD.

Мы должны показать, что если эти два угла равны, то сумма односторонних углов равна 180°.
Давайте докажем это.

Шаг 1: Дано ∠ACD = ∠BCD
Шаг 2: Предположим, что сумма односторонних углов не равна 180°.
Шаг 3: Пусть ∠ACD = x и ∠BCD = x. (накрест лежащие углы равны)
Шаг 4: Пусть односторонние углы равны углам ∠CAB и ∠CDB. Обозначим их как y и z соответственно.
Шаг 5: По предположению, сумма односторонних углов не равна 180°, поэтому y + z ≠ 180°.
Шаг 6: Заметим, что ∠ACB = ∠ACD + ∠BCD = x + x = 2x.
Также, ∠ACB = 180° - ∠CAB - ∠CDB = 180° - y - z.
Шаг 7: Мы можем установить равенство между двумя выражениями: 2x = 180° - y - z.
Шаг 8: Мы знаем, что x = x (накрест лежащие углы равны), поэтому x может быть заменено в уравнении: 2x = 180° - y - z.
Шаг 9: Делим обе стороны на 2: x = (180° - y - z)/2.
Шаг 10: Заменяем x на ∠ACD и ∠BCD: ∠ACD = (∠ACB - ∠CAB - ∠CDB)/2.
Шаг 11: Раскрываем скобки: ∠ACD = ∠ACB/2 - ∠CAB/2 - ∠CDB/2.
Шаг 12: Замечаем, что ∠ACB = 2x, поэтому ∠ACD = x - ∠CAB/2 - ∠CDB/2.
Шаг 13: Заменяем x на ∠ACD и ∠BCD: ∠ACD = ∠ACD - ∠CAB/2 - ∠CDB/2.
Шаг 14: Вычитаем ∠ACD из обеих сторон: 0 = - ∠CAB/2 - ∠CDB/2.
Шаг 15: Перемещаем ∠CDB/2 на другую сторону: ∠CDB/2 = - ∠CAB/2.
Шаг 16: Умножаем обе стороны на 2: ∠CDB = -∠CAB.
Шаг 17: Умножаем обе стороны на -1: -∠CDB = ∠CAB.

Мы обнаружили, что получили равны накрест лежащие углы если и только если сумма односторонних углов равна 180°. Таким образом, верно обратное утверждение.

Надеюсь, это решение ясно объясняет, почему равны накрест лежащие углы тогда и только тогда, когда сумма односторонних углов равна 180°. Если у вас возникнут еще вопросы, пожалуйста, не стесняйтесь спрашивать.
4,5(5 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ