В начале решения находим точки пересечения линий, они дадут пределы интегрирования. Решим уравнение х² + 1 = х + 3. х² - х -2 = 0, х = 2 или х = -1. Это абсциссы точек пересечения. Считаем координаты точек.(-1;2) и (2;5). Для нахождения площади фигуры,ограниченной линиями находим площадь трапеции, ее основания 2 и 5, а высота 3. S = (2+5)/2*3 =10,5. Найдем площадь фигуры под параболой . Интеграл от -1 до 2 от (х²+1)dx = (1/3х³ + х) подстановка от-1 до 2 = (1/3 *2³ +2) - (1/3 *(-1)³-1) = 6. Теперь от всей трапеции отнимем часть под параболой 10,5 -6 =4,5.
Обозначим их числами от 1 до 14. Выпишем составы партий: (1,2,3);(1,2,4);(3,4,5);(5,6,7);(6,7,8);(8,9,10);(9,10,11);(11,12,13);(12,13,14) Как я построил этот список? Взял две первые тройки, (1,2,3);(1,2,4). Жители 1 и 2 уже состоят в 2 партиях каждый, больше они не могут быть ни в одной партии. Следующую партию берем (3,4,5). Теперь жители 3 и 4 каждый в двух партиях, а 5 пока в одной. (5,6,7);(6,7,8) Теперь 5, 6 и 7 - каждый в 2 партиях, и появился житель 8. (8,9,10);(9,10,11) Теперь 8, 9 и 10 - каждый в 2 партиях, и появился житель 11. (11,12,13);(12,13,14) Теперь 11, 12 и 13 - каждый в 2 партиях, и только 14 в одной. Больше жителей нет, поэтому дальше продолжить нельзя. Получилось 9 партий.
Можно построить список по другому принципу: (1,2,3);(1,4,5);(2,4,6);(3,5,6);(7,8,9);(7,10,11);(8,10,12);(9,11,13);(12,13,14) Но в результате все равно получилось 9 партий. Все жители входят в две партии, только 14 в одну.
х² - х -2 = 0, х = 2 или х = -1. Это абсциссы точек пересечения. Считаем координаты точек.(-1;2) и (2;5).
Для нахождения площади фигуры,ограниченной линиями находим площадь трапеции, ее основания 2 и 5, а высота 3.
S = (2+5)/2*3 =10,5.
Найдем площадь фигуры под параболой . Интеграл от -1 до 2 от (х²+1)dx = (1/3х³ + х) подстановка от-1 до 2 = (1/3 *2³ +2) - (1/3 *(-1)³-1) = 6.
Теперь от всей трапеции отнимем часть под параболой 10,5 -6 =4,5.