Чтобы применить формулу Виета , надо иметь при старшей степени коэффициент 1, для этого разделим данный многочлен на 28: x³+3x²/(4*7)+3x/(4*7)+1/(4*7) , тогда х1*х2*х3=-1/(4*7), хотя бы 1 корень будет действительным и ясно, что отрицательным, попробуем -1/4, т е нам надо разделить полученный после деления на 28 многочлен на (х+1/4), проще делить уголком, получаем x² и в остатке (-x²/7+3x/(4*7)+1/(4*7)), продолжаем и получаем (x²-x/7) и в остатке (x/7+1/(4*7)), продолжаем и получаем (x²-x/7+1/7) и в остатке 0-умнички), получаем, что деленный на 28 многочлен равен (x+1/4)(x²-x/7+1/7), два других корня сопряженные комплексные, умножив это разложение на 28 получим разложение данного многочлена, т е первоначальный многочлен равен (4x+1)(7x²-x+1) Задача решена
Пошаговое объяснение:
1) х=5/2=2,5
2) х=3/4=0,75
3) х=2/3
4) х=4/5=0,8
5) |3х+1|=6
х1=5/3=1 2/3
х2=-7/3=-2 1/3
6) |9х+2|=35
х1=33/9=3 6/9=3 2/3
х2=-37/9=- 4 1/9