
ответ: 36 делителей (18 - положительных и 18 отрицательных): ±1, ±2, ±3, ±4, ±5, ±6, ±10, ±12, ±15, ±20, ±25, ±30, ±50, ±60, ±75, ±100, ±150; ±300.
Пошаговое объяснение:
1. Разложение на простые множители:
300|2
150|2
75|3
25|5
5|5
1
Каноническое разложение: 300=2²*5²*3
Поскольку имеется 3, различных по значению множителя, все натуральные делители числа 300 можно записать формулой:
d=2^t₁ * 5^t₂ * 3^t₃, где t может принимать значения 0, 1, 2:
t₁=0; 1; 2
t₂=0; 1; 2
t₃=0; 1
Сейчас можно найти, сколько натуральных делителей имеет число 300, найдя произведение возможных вариантов t:
t₁ - может принимать 3 значения (0, 1, 2),
t₂ - 3 значения (0, 1, 2),
t₃ - 2 значения (0, 1),
3*3*2=18 - всего 18 натуральных делителей имеет число 300
Нахождение делителей:
1) 2⁰*5⁰*3⁰=1
2) 2⁰*5⁰*3¹=3
3) 2⁰*5¹*3⁰=5
4) 2⁰*5¹*3¹=15
5) 2⁰*5²*3⁰=25
6) 2⁰*5²3¹=75
7) 2¹*5⁰*3⁰=2
8) 2¹*5⁰*3¹=6
9) 2¹*5¹*3⁰=10
10) 2¹*5¹*3¹=30
11) 2¹*5²*3⁰=50
12) 2¹*5²*3¹=150
13) 2²*5⁰*3⁰=4
14) 2²*5⁰*3¹=12
15) 2²*5¹*3⁰=20
16) 2²*5¹*3¹=60
17) 2²*5²*3⁰=100
18) 2²*5²*3¹=300
ответ: получено 18 натуральных (роложительные) делителей, поскольку, в задании требуется найти все делители, то отрицательных делителей тоже 18: 18+18=36
Пошаговое объяснение:
Вклад в размере 10 млн рублей планируется открыть на четыре года. В конце каждого года банк увеличивает вклад на 10% по сравнению с его размером в начале года. Кроме этого, в начале третьего и четвёртого годов вкладчик ежегодно пополняет вклад на х млн рублей, где х — целое число. Найдите наименьшее значение «х», при котором банк за четыре года начислит на вклад больше 7 млн рублей.
Решение
Проведем небольшой анализ условия задачи. Если у нас в год вклад увеличивается на 10%, то в конце первого года вклад составит 11 млн рублей, а в конце второго — 12,1 млн рублей ( 11 + 1,1). В начале третьего и четвертого года вкладчик пополняет вклад на «х» рублей. Получается, что в начале третьего года вклад (в млн рублей) составит 12,1 + х, а в конце — 13,31 + 1,1х. Аналогично, в начале четвёртого года вклад составит 13,31 + 2,1х, а в конце четвертого года — 14,641 + 2,31х.
Так как по условию задачи нам необходимо найти наименьшее целое х, для которого только начисления банка составят 7 млн рублей, то для него должно быть выполнено неравенство:
(14,641 + 2,31х) – (10 + 2х) > 7
В котором первая скобка представляет собой весь процесс движения средств по счету за четыре года, а вторая скобка представляет собой сумму денег, которые вкладчик внес на счет за все четыре года.
Решим данное неравенство, раскрыв скобки и приведя подобные и получим:
Получается, что наименьшее целое решение этого неравенства — число 8. Таким образом, в начале третьего и четвёртого годов вкладчик ежегодно пополняет вклад на 8 млн рублей.
ответ: 8
15:54=15/1:54/1=:15/1:1/54=15/54
15/54*27/1=15/2
15:2=7,5
75 метров ткани понадобится
Пошаговое объяснение:
вроде верно,надеюсь