12 ч; 24 ч
Пошаговое объяснение:
Дано:
r₁ - скорость первого человека; t₁ - время первого человека
r₂ - скорость второго человека; t₂ - время второго человека
t₁ + t₂ = t = 8 ч
Формула для общей работы:
(r₁ + r₂) · t = 1 (единицей выражается объем работы, если он не указан)
r₁ + r₂ = 1/8 (скорость в час, работая вместе)
(r₁ + r₂) · 2 = 1/8 · 2 = 1/4 (объем работы, сделанный за 2 часа вместе)
1 - 1/4 = 3/4 (объем работы, который остался, когда один человек ушел)
r₂ = 3/4 ÷ 18 = 1/24 (скорость второго человека, который остался)
1/24 · t₂ = 1 или t₂ = 24 ч (время второго человека, если бы он сделал работу самостоятельно)
r₁ + r₂ = 1/8 или r₁ + 1/24 = 1/8 или r₁ = 1/12 (скорость первого человека)
1/12 · t₁ = 1 или t₁ = 12 ч (время первого человека, если бы он сделал работу самостоятельно)
Відповідь:
1 та 2
Пояснення:
Розкладемо ліву частину нерівності на множники, розв'язавши відповідне квадратне рівняння:
-2x²+5x-2 = 0
2x²-5x+2 = 0
D = b²-4ac = (-5)²-4·2·2 = 25-16 = 9
x_1 = (-b+√D)/2a = (5+√9)/(2·2) = (5+3)/4 = 2
x_2 = (-b-√D)/2a = (5-√9)/(2·2) = (5-3)/4 = 0,5
Тоді -(2x²-5x+2) = -2(x-0,5)(x-2) = (2x-1)(2-x)
Тепер нерівність перетворена до такої: (2x-1)(2-x) ≥ 0
Розв'яжемо її методом інтервалів. Позначимо нулі функції в лівій частині нерівності (корені щойно розв'язаного рівняння) на числовій прямій та з'ясуємо знак цієї функції на кожному з проміжків, які утворяться (проставимо "+" або "-").
- + -
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(0,5)¯¯¯¯¯¯¯¯¯¯¯¯¯¯(2)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
Множиною розв'язків буде проміжок, на якому функція набуває невід'ємних значень. Тобто x ∈ [0,5; 2]. Йому належать лише два цілих числа: 1 та 2.