Решение.
Объем пирамиды найдем по формуле:
V=1/3 Sh
Зная диагональ основания пирамиды, найдем сторону основания.
d2 = a2 + a2
42 = 2a2
16 = 2a2
a= √8 = 2√2
Соответственно, площадь основания
S = 8 см2 .
Проведем через вершину правильной четырехугольной пирамиды вертикальное сечение. Поскольку боковые грани пирамиды наклонены к основанию под углом 60 градусов, то сечение образует равносторонний треугольник.
Основание равностороннего треугольника равно 2√2. Откуда высота будет равна
h = √3/2 a
h = √3/2 * 2√2 = √6
Откуда объем правильной пирамиды с четырехугольником в основании равен
V=1/3 Sh
V = 1/3 * 8 * √6 = 8√6 / 3
ответ: 8√6 / 3 см3.
1.
2,8 * (-3,9) - 76,15 : 15,23 = -15,92
1) 2,8 * (-3,9) = -10,92
2) 76,15 : 15,23 = 5
3) -10,92 - 5 = -15,92
ответ: -15,92
2.
34,68 : (7,11 + 1,56) + 46 : (2,45 - 1,65) = 61,5
1) 7,11 + 1,56 = 8,67
2) 34,68 : 8,67 = 4
3) 2,45 - 1,65 = 0,8
4) 46 : 0,8 = 57,5
5) 4 + 57,5 = 61,5
ответ: 61,5
3.
(0,62 + 0,56 - 2,29) * (8,44 - 5,34) = -3,441
1) 0,62 + 0,56 = 1,18
2) 1,18 - 2,29 = -1,11
3) 8,44 - 5,34 = 3,1
4) -1,11 * 3,1 = -3,441
ответ: -3,441
4.
62,93 + (12,5 - 7,6 + 3,21) : 0,1 = 144,03
1) 12,5 - 7,6 = 4,9
2) 4,9 + 3,21 = 8,11
3) 8,11 : 0,1 = 81,1
4) 62,93 + 81,1 = 144,03
ответ: 144,03