Сумма углов четырех угольника равна 360 угл1 =89 угл 2 на 38 больше значит =89+38=127 360-(127+89)=144 угл 3 =углу 4=144:2=72
Пошаговое объяснение:
ответ:
распределительное. распределительное свойство применяется только относительно сложения. распределительное свойство гласит: если число умножается на сумму, то можно каждое из слагаемых умножить на это число, а результаты сложить.
сочетательное.
сочетательное свойство говорит о том, что при перемножении трех и более чисел, можно перемножить два первых числа, а результат использовать дальше в качестве множителя. то есть 3*4*5=12*5=60
переместительное. переместительное свойство гласит, от перемены мест множителей произведение не меняется.
распределительное свойство может применяться и относительно вычитания или деления. с этого свойства раскрывают скобки в примерах при необходимости.
переместительное свойство
правильное использование определения переместительного свойства умножения может увеличить скорость счета. к сожалению, специальных правил группировки нет. нужно полагаться только на собственный опыт и логику. рассмотрим небольшой пример, чтобы показать применение свойства на практике:
((15*25*7*3: 125)-3): 12 – в этом примере можно только правильно сгруппировав произведение в скобках для ускорения деления. для этого представим число 15 в виде произведения 3*5
((15*25*7*3: 125)-3): 12=((5*3*25*7*3: 125)-3): 12 теперь перемножим 5 и 25, выполним деление произведения на число. для этого можно только один из множителей разделить на это число, а потом результат использовать, как один из множителей.
*25)*3*7*3: 125)-3): 12=((125*3*7*3: 125)-3): 12=(3*3*7-3): 12=(9*7-3): 12=(63-3): 12=60: 12=5
без переместительного свойства не удалось бы правильно сгруппировать множители, а значит пришлось бы считать пример полностью, что отняло бы большое количество времени
Размещения A(m,n)=n!/(n−m)!, где n=5 - общее количество чисел, m=4 - число чисел в выборке.
Находим:
d1=A(4,5)=5!/(5−4)!=2*3∗4∗5=120
Числа не могут начинаться с 0, т.е. это количество чисел (начинающихся с 0) нужно вычесть из полученного количества. Первая цифра этих четырехзначных чисел известна - 0, а остальное количество чисел находим по формуле Размещения, где n=4, m=3, т.к. одна цифра (0) уже использована
d2=4!/2!=3∗4=12
Получили, что количество четырехзначных чисел равно
D=d1−d2=120-12=108
сумма углов четырёхугольника равна 360
угол1= 89
угол2 на 38 больше, значит= 89+38=127
360-(127+89)=144
угол3= углу4= 144:2=72.
Пошаговое объяснение: