М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kiberyblydok23
Kiberyblydok23
06.11.2020 21:00 •  Математика

В четырёх папках лежат планы определённой местности: области, города, района, посёлка. На папках даны верные
подписи. Какие планы лежат в каждой из папок?
1,не города ,не района
2не района
3не города не,посёлка
4не посёлка не облости не города​

👇
Ответ:
pashakort
pashakort
06.11.2020

1 поселка

2 города

3 области

4 района

4,4(67 оценок)
Ответ:
rashas05
rashas05
06.11.2020

1.посёлка

2.города

3.области

4.района

это легко

4,7(61 оценок)
Открыть все ответы
Ответ:
Gloriyaxx
Gloriyaxx
06.11.2020
Дано:
v(собств.)=18 км/ч
v(теч. реки)=2 км/ч
t(по теч.)=1,5 часа
t(по озеру)=45 минут = \frac{45}{60} часов = \frac{3}{4} ч (1 час = 60 минут)
Найти:
S=S(по теч.)+ S (по озеру) км
Решение
S(расстояние)=v(скорость)*t(время)
1) v(по теч.) = v(собств.) + v(теч. реки) = 18+2=20 (км/ч) - скорость катера по течению реки.
2) S (по теч.) =v(по теч.)*t(по теч.)=20*1,5=30 (км) - проплыл катер по течению реки.
3) S(по озеру) = v(собств.)*t(по озеру) = 18*\frac{3}{4} = \frac{18*3}{4} = 13,5 (км) - проплыл катер по озеру (стоячая вода, поэтому берется только собственная скорость катера).
4) 30+13,5=43,5 (км) - проплыл катер всего.
ответ: 43,5 км
4,5(29 оценок)
Ответ:
катерина424
катерина424
06.11.2020

ответ: (e-1)/3

Пошаговое объяснение:

Найдём неопределённый интеграл функции e^(x^3)*x^2 чтобы использовать фундаментальную теорему исчисления.

                                            \int{e^{x^{3} }x^2 } \, dx.

Пусть u=x^3, тогда x=\sqrt[3]{u}.

                              du = 3x^2dx \\ dx = \frac{du}{3x^2} = \frac{du}{3(\sqrt[3]{u} )^{2}} = \frac{du}{3u^{2/3}}

Делаем подстановку в наше изначальное выражение:

                                      \int{e^{x^{3}}x^2dx}=\int{e^{u}(\sqrt[3]{u})^{2}\frac{du}{3u^{2/3}} } = \int{ e^uu^{2/3}\frac{du}{3u^{2/3}} }

Здесь u^{2/3} сокращаются и мы имеем \int{e^u\frac{du}{3}}. Выносим \frac{1}{3} за интеграл: \frac{1}{3} \int{e^u} \, du. Теперь мы имеем знакомый интеграл, который равняется \frac{1}{3} (e^{u}+C), тоже самое что \frac{1}{3} e^u+C. Подставляем u=x^3 и имеем \frac{1}{3}e^{x^3}+C. Используем фундаментальную теорему исчисления:

\int\limits^1_0 {e^{x^3} x^2} = \frac{1}{3} e^{x^3}]_0^1=\frac{1}{3} e^{1^3}-\frac{1}{3} e^{0^3}=\frac{1}{3} e^1-\frac{1}{3} e^0=\frac{1}{3} e-\frac{1}{3}=\frac{e-1}{3}

                 

4,4(87 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ