Відповідь:
x=4.099494563
y=0.8976946457
Покрокове пояснення:
log_8 (x+y)+log_8 (x-y) = 1/3log_2 (x+y)+1/3log_2 (x-y)=4/3
log_2 (x+y)+log_2 (x-y)=4
log(x^2-y^2)=log_2(2^4)
x^2-y^2=16
6^(log_4(x+y)=8
(6^(log_2(x+y))^(1/2)=8
6^(log_2(x+y)=64
log_6(6^(log_2(x+y)) =log_6 (64)
log_2(x+y)=6/log_2(6)=2.3211168434
Подставим в предидущее уравнение
log_2 (x+y)+log_2 (x-y)=4
log_2 (x-y)=4-2.3211168434=1.678883156
x-y=2^1.678883156
x-y=3.201799918
x=y+3.201799918
Подставим x в
x^2-y^2=16
(y+3.201799918)^2-y^2=6.403599836y+10.251522714=16
y=0.8976946457
Подставим y в x=y+3.201799918
x=0.8976946457+3.201799918
x=4.099494563
1)
sin(x)*sin(3x)
так как
sin (3x)= sin(2x + x) = sin(2x) cos(x) + sin(x)cos(2x), то
sin(x)*sin(3x)=sin(x)*[ sin(2x) cos(x) + sin(x)cos(2x)]=
=sin(x)*[2sin(x)cos(x)*cos(x)+sin(x)*(2cos^2(x)-1)]=
=sin^2(x)*[2cos^2(x)+2cos^2(x)-1]=sin^2(x)*[4cos^2(x)-1]=
=4sin^2(x)cos^2(x)-sin^2(x)
a. int(4sin^2(x)cos^2(x))dx=int(2sin(x)cos(x))^2dx=int(sin(2x)^2dx=
=int((1/2)*(1-cos(2*2x)))dx=(1/2)*(x-(1/4)*sin(4x))+c
б. int(sin^2(x))dx=(-1/2)int(1-cos(2x))dx=(-1/2)*[x-(1/2)sin(2x))]+c
итого
int sin(x)*sin(3x)dx=(1/2)*[x-(1/4)*sin(4x)]+c1+(-1/2)*[x-(1/2)sin(2x)]+c2=
=(1/2)*[(1/2)sin(2x)-(1/4)sin(4x)]+c
50,56 - (24,16 +19,80) + 0,808 = 51,368(так 50,56+0,808)-4,36 = 47,008
21,021+60,19-(68,7-9,1) = 81,211-59,6 = 21,611