Исходя из условий задачи можно утверждать точно, что: Условие 1. Все 5 внуков получили пирожки; Условие 2: Каждый внук получил не меньше 1 пирожка.
Что может быть верно? А) кто-то то получил 6 пирожков , а кто-то то - 2. 10 ( пирожков всего) - 6 (получил кто-то из 5 внуков)=4 (пирожка осталось). Значит остальные 4 внука должны получить как минимум по 1 пирожку (4*1=4). Значит 2 пирожка не смог бы получить никто. ОТВЕТ: НЕВЕРНО
Б) Четыре внука получили по 1 пирожку 4 (внука)*1 (по одному пирожку)=4 (пирожка), а пятый внук мог получить от одного до шести пирожков (по желанию). ответ: ВЕРНО.
В) Два внука получили по 4 пирожка. 2 *4 = 8 пирожков получили два внука. Значит, 10-8=2 пирожка нужно разделить на трех внуков (2:3<1). Не соответствует условию 2, ведь каждый внук получил как минимум по 1 пирожку. ответ: НЕВЕРНО.
Г) Три внука получили по 3 пирожка. 3*3=9 пирожков. Остальные два внука (5-3=2) получили 1 пирожок на двоих. Не соответствует второму условию. ответ: НЕВЕРНО.
Д) Ровно четыре внука получили по 2 пирожка. Не соответствует первому условию, все 5 внуков получили пирожки, а не только (ровно) 4 внука. ответ: НЕВЕРНО.
Единственный верный вариант: Б) Четыре внука получили по 1 пирожку
Нужно найти отношение (то есть поделить) общего числа бросков к числу попаданий для каждого баскетболиста и сравнить их. Проделаем это: I баскетболист Сделал 8 бросков, попал 3 раза, отсюда отношение общего числа бросков к числу попаданий имеет вид: . II баскетболист Сделал 15 бросков, 6 из которых были удачными, найдем отсюда долю попаданий от общего числа бросков: . Готово. Определим теперь, результат какого баскетболиста лучше. Для этого необходимо сравнить дроби. Чтобы сравнить дроби, приведем их к общему знаменателю, получается: и , где числитель дроби — общее число бросков, а ее знаменатель — число попаданий. Видно, что при одинаковом числе попаданий, второй баскетболист совершил меньше бросков, а значит и его результат лучше.
AD = 3см
Надеюсь, что Удачи!