М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
csnoleg
csnoleg
12.04.2022 17:18 •  Математика

Заданы первый член и знаменатель геометрической про- грессии. Найти сумму членов с номерами от заданного номера K
до заданного номера P (считать K < P)​

👇
Ответ:
Chillin
Chillin
12.04.2022
Для решения этой задачи нам понадобится формула для суммы членов геометрической прогрессии:

S(n) = a * (r^n - 1) / (r - 1),

где S(n) - сумма первых n членов геометрической прогрессии,
a - первый член прогрессии,
r - знаменатель прогрессии,
n - количество членов прогрессии.

В нашем случае нам необходимо найти сумму членов с номерами от заданного номера K до заданного номера P. Поэтому нам нужно вычислить сумму первых P членов, вычислить сумму первых (K-1) членов и вычесть из первой суммы вторую:

sum = S(P) - S(K-1).

Теперь разберемся с подстановкой значений:

1. Зная первый член а и знаменатель r, мы можем вычислить сумму первых P членов геометрической прогрессии:
S(P) = a * (r^P - 1) / (r - 1).

2. Вычислим сумму первых (K-1) членов аналогичным образом:
S(K-1) = a * (r^(K-1) - 1) / (r - 1).

3. И, наконец, найдем искомую сумму:
sum = S(P) - S(K-1).

Итак, шаги для решения задачи:

Шаг 1: Записать значения первого члена а и знаменателя r.

Шаг 2: Записать значения номеров членов K и P.

Шаг 3: Вычислить сумму первых P членов геометрической прогрессии по формуле S(P) = a * (r^P - 1) / (r - 1).

Шаг 4: Вычислить сумму первых (K-1) членов геометрической прогрессии по формуле S(K-1) = a * (r^(K-1) - 1) / (r - 1).

Шаг 5: Вычислить значение искомой суммы по формуле sum = S(P) - S(K-1).

Шаг 6: Ответить на вопрос, предоставив полученное значение sum.

Например, если заданы значения a = 2, r = 3, K = 2 и P = 5, то:

Шаг 1: a = 2, r = 3.

Шаг 2: K = 2, P = 5.

Шаг 3: S(P) = 2 * (3^5 - 1) / (3 - 1) = 2 * (243 - 1) / 2 = 242.

Шаг 4: S(K-1) = 2 * (3^(2-1) - 1) / (3 - 1) = 2 * (3^1 - 1) / 2 = 1.

Шаг 5: sum = S(P) - S(K-1) = 242 - 1 = 241.

Шаг 6: Ответ: сумма членов с номерами от 2 до 5 равна 241.

Это был подробный и обстоятельный ответ на задачу о сумме членов геометрической прогрессии. Если у тебя возникли еще вопросы, не стесняйся задавать их!
4,5(12 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ