Давайте попробуем найти закономерность. 1111:11=101, т.е. число содержащее 4 единицы делим на 11 и получаем 2 единицы и 1 ноль. Таким образом 4единицы:2единицы=2единицы и 2-1=1 ноль 111111:11=10101, т.е. число содержащее 6 единиц делим на 11 и получаем 3 единицы и 2 ноля. Таким образом 6единиц:2единицы=3единицы и 3-1=2 ноля 11111111:11=1010101, т.е. число содержащее 8 единицы делим на 11 и получаем 4 единицы и 3 ноля. Таким образом 8единицы:2единицы=4единицы и 4-1=3 ноля
Следовательно, если число содержащее 2016 единиц разделить на 11 мы получим: 2016единиц:2единицы=1008единиц и 1008-1=1007 нолей
Вероятностью события называют отношение числа элементарных исходов испытания, благоприятствующих наступлению события, к числу всех возможных элементарных исходов испытания. Исходя из условий задачи, вероятность того, что Муми-тролль будет чувствовать себя совершенно счастливым, составляет 1/3 - математически: общее число исходов =3 дня, число благоприятных исходов (достаточно солнечный день) =1 день, а вот для Хемуля вероятность совершенно счастливого дня — 1/4, так как для него общее число исходов =4 дня, число благоприятных исходов (достаточно солнечный день) =1 день. Тогда, в силу теоремы сложения вероятностей, вероятность того, что в случайно выбранный день хотя бы один из них будет совершенно счастлив, составляет 1/3 + 1/4 = 7/12 ≈ 0,583
1111:11=101, т.е.
число содержащее 4 единицы делим на 11 и получаем 2 единицы и 1 ноль. Таким образом 4единицы:2единицы=2единицы и 2-1=1 ноль
111111:11=10101, т.е.
число содержащее 6 единиц делим на 11 и получаем 3 единицы и 2 ноля. Таким образом 6единиц:2единицы=3единицы и 3-1=2 ноля
11111111:11=1010101, т.е.
число содержащее 8 единицы делим на 11 и получаем 4 единицы и 3 ноля. Таким образом 8единицы:2единицы=4единицы и 4-1=3 ноля
Следовательно, если число содержащее 2016 единиц разделить на 11 мы получим:
2016единиц:2единицы=1008единиц и 1008-1=1007 нолей