1. Формула для объёма всего "пирамидообразного" V1 = 1/3 * S1 * h1 Формула для объема призмы V2 = S2 h2.
Пусть в основании квадрат с радиусом 2а. Тогда S1 = pi * a^2 S2 = 4a^2 h2 = h1 V2 / V1 = 3 S2 h2 / (S1 h1) = 3 * 4 / pi = 12 / pi
2. Если линейные размеры увеличить в k раз, площади увеличиваются в k^2 раз, объемы - в k^3 раз. Кол-во краски пропорционально площади поверхности.
Понадобится 100 * 3^2 = 900 г краски
3) Радиусы равны 3 и 5. В осевом сечении - равнобедренная трапеция с основаниями 6 и 10, в которую можно вписать окружность. Окружность можно вписать, если суммы длин противоположных сторон равны. Тогда бок. сторона = образующая = (6 + 10) / 2 = 8 S = pi (r1 + r2) l = pi (3 + 5) * 8 = 64pi
3,258 < 4,2;
6,381 < 6,4;
0,95 > 0,9499.
б) Выразить в метрах:
3 м 321 мм=3м+0,321м=3,321 м≈3,32 м
5 м 80 мм=5 м+0,08 м=5,08м
473 мм=0,473м≈0,47м
5 мм=0,005м
3.Округлить:
а) 5,2; 20,7; 361,5 и 0,4 (до единиц);
б) 0,62; 15,24; 4,37 и 0,01 (до сотых).
4. Собственная скоpость теплохода 53,2 км/ч. Скоpость теплохода пpотив течения pеки 50,5 км/ч. Найди скоpость теплохода по течению.
1) Вычислим скорость течения реки: 53,2-50,5=2,7 км/ч
2) 53,2+2,7= 55,9 (км)
5. Запиши четыpе значения a, пpи котоpых веpно неpавенство:
17,5>а>2,13 (а= 2,99; 5; 9,5; 17,4)
96,2 >а>4,09 (а=10; 40;50;96,1)
0,39 >а>0,046 (а=0,049; 0,05; 0,25; 0,38)
6 >а>3,54 (а=3,59; 4; 4,5; 5,9)
0,33<а<0,36 (а=0,34; 0,35; 0,345; 0,355)