М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sashadavydov2
sashadavydov2
16.03.2020 15:46 •  Математика

В школьном музее боевой слыва 312 экспонатов. Две третьих части всех экспонатов подарили музею ветераны, а остальные собрали ученики. Сколько экспонатов собрали ученики? ​

👇
Ответ:
bodrenkodaria
bodrenkodaria
16.03.2020

104

Пошаговое объяснение: 312/3 = 104  , 208 собрали ветераны

4,6(69 оценок)
Ответ:
Asked9me9
Asked9me9
16.03.2020

567орпрзлргщлтрощррлзщ

Пошаговое объяснение:

ҮЙ ТАПСЫРМАСЫ

11 Есепте.

1%

3%

5%

2 000 тг

3 600 км

4,6(90 оценок)
Открыть все ответы
Ответ:
2 + х(2/100) + х((2 + х(2/100))/100) = 2.42

2 + х(2/100) - цена после первого повышения.
Поясню немного, как вычислить это. Мы делим исходную цену на 100 и умножаем на нужное кол-во процентов (тут на х) и прибавляем результат к исходной цене. Так мы получили цену после повышения на х процентов. Со вторым повышением так же всё.

Надо решить такое уравнение.

200 + 2х + х(2 + х(2/100)) = 242

2х + 2х + 0.02х² = 42

х² + 200х - 2100 = 0

Это уравнение имеет корни 10 и -210 (по теореме Виета). Ясно, что -210 не подходит. Значит осталось только 10.

ответ: 10
4,8(56 оценок)
Ответ:
Lelechk
Lelechk
16.03.2020
Предположим, что существует натуральное число b такое, что b⁴=5a⁴+13 (знак b значения не имеет, поэтому достаточно доказать, что таких натуральных чисел нет). Тогда число b можно записать как 5n+r, где r - остаток от деления числа b на 5. Получаем равенство (5n+r)⁴=5a⁴+13. Заметим, что правая часть имеет остаток 3 при делении на 5, а значит, число b⁴ имеет остаток 3 при делении на 5 и r≠0. Выражение (5n+r)⁴ имеет такой же остаток при делении на 5, что и число r⁴ (если мы раскроем скобки, то слагаемое r⁴ окажется единственным, не делящимся на 5). Легко проверить, что при r=1,2,3,4 число r⁴ имеет остаток 1 при делении на 5. Мы получили противоречие, следовательно, такого числа b не существует и  число 5a⁴+13 не является четвертой степенью никакого целого числа.
4,8(98 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ