М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
abbasovamadina2
abbasovamadina2
12.01.2020 05:17 •  Математика

Раскройте скобки и приведите подобные слагаемые: 1)-2a-2(-a+7)+14 2) 3(-8x+4)+2(12x-8)+2x. Объяснить как решали

👇
Ответ:
superparty
superparty
12.01.2020

Пошаговое объяснение:

1)-2a-2(-a+7)+14 =-2а+2а-14+14=0

2) 3(-8x+4)+2(12x-8)+2x=

-24х+12+24х-16+2х=2х-4

4,6(9 оценок)
Открыть все ответы
Ответ:

Существует

Пошаговое объяснение:

На самом деле такое число найдётся для любой натуральной степени 5^k.

Я утверждаю, что для всех k найдётся число, состоящее из k цифр, не содержащее нулей в десятичной записи и делящееся на 5^k.

Доказываем по индукции.

База индукции. Для k = 1 подходит 5^1=1.

Индукционный переход. Пусть длина числа n\cdot5^k равна k, десятичная запись этого числа не содержит нулей. Припишем к этому числу слева ненулевую цифру a и потребуем, чтобы получившееся число делилось на 5^{k+1}.

Получившееся число равно n\cdot5^k+a\cdot10^k=5^k(n+a\cdot2^k), оно будет делиться на 5^{k+1}, если  делится на 5.

2^k при делении на 5 может давать остатки 1, 2, 3 и 4; n может давать любые остатки от 0 до 4. Ниже в таблице я явно выписываю, какие можно взять a для каждой комбинации остатков. Например, если n даёт остаток 3 при делении на 5; 2^k даёт остаток 4 при делении на 2, то можно взять a = 3: тогда n+a\cdot2^k даёт такой же остаток при делении на 5, что и 3+3\cdot4=15.

Таким образом, если для k такое число найдётся, то и для k + 1, а значит, и для всех k, в том числе и для k = 1987.

Вот, например, числа, построенные для k от 1 до 20:

5 25 125 3125 53125 453125 4453125 14453125 314453125 2314453125 22314453125 122314453125 4122314453125 44122314453125 444122314453125 4444122314453125 54444122314453125 254444122314453125 1254444122314453125 21254444122314453125

Например, число 21254444122314453125 делится на 5^{20} и не содержит нулей :)


Существует ли число, не содержащее в записи ни одного нуля и делящееся на 5^1987?
4,6(52 оценок)
Ответ:
daffar1daffari
daffar1daffari
12.01.2020

3 минуты

Пошаговое объяснение:

Запишем решение в следующем виде:

3 кошки поймали  (:3)     |    3 мышек  (:3)     |   за 3 минуты

1 кошка поймала   (·30)   |    1 мышку   (·30)   |   за 3 минуты

30 кошек поймают          |    30 мышек          |   за 3 минуты

3 кошки поймали           |    3 мышек    (:3)     |   за 3 минуты  (:3)

3 кошки поймали  (·10)   |    1 мышку   (·10)     |   за 1 минуту

30 кошек поймают         |    10 мышек  (·3)     |  за 1 минуту    (·3)

30 кошек поймают         |    30 мышек           |   за 3 минуты

4,5(14 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ