S=2*S(осн)+4*S(бок)=2*0,5*d1*d2+4*a*h=d1*d2+4*a*hd1 и d2-диагонали основания(ромба) - известны, d1=10, d2=24a-сторона основания(ромба) - надо найтиh-высота параллепипеда - надо найти
найдем a из треугольника OCD по теореме Пифагора:a^2=(0,5*d1)^2+(0,5*d2)^2=(0,5*10)^2+(0,5*24)^2=5^2+12^2=25+144=169a=13
найдем h из треугольника BD1D(прямоугольный):уг. B=45, зн. уг. D1=90-45=45, сооответсвеннотреуг. BD1D-равнобедренный, BD=D1D=10, т.е. h=10
подставляем в первую формулу и получаем:S=10*24+4*13*10=240+520=760 см^2
Рассмотрим случай, при котором квадратный корень из числа не извлекается нацело, и необходимо найти её приближённое значение. Воспользуемся методом извлечение квадратных корней столбиком. Допустим, необходимо найти приближённое значение √7. Чтобы извлечь квадратный корень из 7, нужно:
Разбить число, из которого мы извлекаем квадратный корень, на разряды справа налево по 2 цифры в каждом разряде. Если число содержит нечётное количество цифр, в данном случае "7" состоит из одной цифры. В этом случае нужно приписать слева от цифры ноль. Теперь нужно извлечь квадратный корень с недостатком из левого разряда по 2 цифры - это значит, что нужно извлечь квадратный корень из наибольшего целого числа, не превосходящего "7", из которого корень извлекается, извлекается корень из 4, √4 = 2, записываем "2" после знака "равно", а "4" приписываем под первым разрядом и вычитаем (7 - 4 = 3).Далее ставим разделительную черту, и справа от "3" записываем ещё две цифры следующего разряда, но у нас больше нет цифр, значит, дописываем мысленно после "7" запятую, а после запятой два нуля, и эти два нуля сносим к нашей цифре "3" ⇒ 300. Так как мы снесли эти два нуля после запятой, то нужно после "2" не забыть поставить запятую и продолжить извлечение корня.Для того чтобы продолжить вычисления, необходимо умножить "2" на 2 ⇒ "4" и записать слева от черты. После полученной "4" ставим звёздочку, под звёздочкой ещё одну звёздочку.Теперь надо подобрать, какую цифру нужно поставить вместо этой звёздочки так, чтобы произведение этого двузначного числа (4*) на однозначное (*) не превосходило бы "300", но было бы при этом максимальным. Возьмём 7, 47•7 = 329 > 300 - не подходит, берём 6, 46•6 = 276 < 300 - подходит (максимальное) и теперь вычитаем (300 - 276 = 24). То, что вместо звёздочки записали, это как раз будет следующая цифра в нашем корне.Дальше то же самое, сносим следующие две цифры следующего разряда, то есть ещё два нуля, получаем "2400". Умножаем число "26" на 2, не обращая внимание на запятую ⇒ "52", оставляем место для звёздочки. Вместо звёздочки подбираем такую цифру, чтобы " 52*•* " не превысило бы "2400", берём 4, 524•4 = 2096 - подходит (максимальное) и вычитаем (2400 - 2096 = 304). То, что вместо звёздочки записали, записываем в результат. Дальше то же самое, см. приложение. В итоге получаем приближённое значение, √7 ≈ 2,6457513 ≈ 2,64 ≈ 2,6, а насколько находить приближённое значение квадратного корня, это уже на ваше предпочтение.Вначале метод кажется очень сложным, но в ходе систематического её применения, можно легко извлекать квадратные корни столбиком. Метод работает и для чисел, из которых квадратный корень извлекается нацело и необходимо найти это извлечение (см. приложение). После прочтения "плана" можно задасться вопросом, почему ж мы в процессе извлечения корня умножали на 2 ? Если мы извлекали бы корень третьей степени, то умножали бы на 3, если пятой степени, на 5 и т.д. И вместо звёздочек можно ставить точки. Конечно, есть ещё один метод извлечения квадратных корней, легче, при формулы квадрата суммы, но этот метод стоит времени.
Пошаговое объяснение:
Найдём площадь круга :
D = 4 см
S - ? см²
S = πR² = π * (D:2)²
S = 3,14 * (4:2)² = 3,14 * 2² = 3,14 * 4 = 12,56 см²
Теперь найдём площадь квадрата:
а = 1,8 см
S - ? см²
S = a²
S = 1,8² = 3,24 см²
Сейчас найдём площадь заштрихованной фигуры:
S = S1 - S2
S = 12,56 - 3,24 = 9,32 см²
ответ : 9,32 см²