М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maslennikovavi2
maslennikovavi2
08.09.2020 23:19 •  Математика

Физкультура. заполните, где пропуски. 4. в чем заключаются правила регулирования нагрузки? 4.1. нагрузка должна расти постепенно 4.2. паузы между могут достигать минут. 4.3. паузы между следует заполнять на 4.4. для увеличения абсолютной силы мышц выполняют подходов. 4.5. в каждом подходе повторяется раз. 5. какие правила надо соблюдать, чтобы избежать нарушения осанки? 5.1. оказаться от привычки носить сумку всегда в 5.2. сидеть на стуле надо, опираясь на бедра. 5.3. между телом и краем стола должен быть зазор см. 5.4. сидеть на стуле надо так, чтобы ноги были согнуты в коленных и тазобедренных суставах под углом. 5.5. стул должен быть обязательно со

👇
Ответ:
catxripunowa
catxripunowa
08.09.2020
4.2 - 5минут
4.3 - расслабление
4.4 - 5 походов
4.5 - 5 раз
5.1 -
5.2 - верхие
5.3 - 25 см.
5.4 - прямым
5.5 - со спинкой
4,6(12 оценок)
Открыть все ответы
Ответ:

График прямой задается формулой y = kx + l, где k и l — некоторые коэффициенты, x — независимая переменная, которая называется линейной функцией.

Имеем три точки: (-2; \ b), \ (1; \ b^{2}); \ (4; \ 3), где b — параметр, который нужно найти.

Подставляя соответствующие координаты в функцию, получаем систему из трех линейных уравнений с тремя неизвестными:

\left\{\begin{matrix}b = -2k + l \\ b^{2} = k + l \ \ \\ 3 = 4k + l \ \ \end{matrix}\right.

Из третьего уравнения: l = 3 - 4k. Подставим l = 3 - 4k в первое и во второе уравнение:

\displaystyle \left \{ {{b = -2k + 3 - 4k} \atop {b^{2} = k + 3 - 4k \ \ }} \right.

\displaystyle \left \{ {{b = 3 - 6k \ } \atop {b^{2} = 3 - 3k }} \right.

Выразим из второго уравнения k:

-3k = b^{2} - 3

k = -\dfrac{b^{2} - 3}{3}

Подставим k = -\dfrac{b^{2} - 3}{3} в первое уравнение:

b = 3 - 6 \cdot \left( -\dfrac{b^{2} - 3}{3} \right)

b = 3 + 2(b^{2} - 3)

b = 3 + 2b^{2} - 6

2b^{2} - b - 3 = 0

Решим полученное квадратное уравнение через дискриминант:

D = (-1)^{2} - 4 \cdot 2 \cdot (-3) = 1 + 24 = 25

b_{1,2} = \dfrac{1 \pm \sqrt{25}}{2 \cdot 2} = \dfrac{1 \pm 5}{4}

Таким образом, имеем: b_{1} = -1; \ b_{2} = 1,5

ответ: b_{1} = -1; \ b_{2} = 1,5

4,4(33 оценок)
Ответ:
Dimastopgaming
Dimastopgaming
08.09.2020

Задана функция f(x) = 3x^{5} - 5x^{3}

1) Найдем область определения функции:

D(f) = (-\infty; \ +\infty), то есть x \in \mathbb{R}

2) Исследуем функцию на четность:

f(-x) = 3(-x)^{5} - 5(-x)^{3} = -3x^{5} + 5x^{3} = -(3x^{5} - 5x^{3}) = -f(x)

Функция нечетная, непериодическая.

3) Найдем точки пересечения графика функции с осями координат:

Если x = 0, то y = 0, значит (0; \ 0) — точка пересечения с осью Oy.

Если y = 0, то есть 3x^{5} - 5x^{3} = 0, то:

x^{3}(3x^{2} - 5) = 0

\left[\begin{array}{ccc}x^{3} = 0 \ \ \ \ \ \ \ \\3x^{2} - 5 = 0\\\end{array}\right

\left[\begin{array}{ccc}x = 0 \ \ \ \ \ \ \ \\ x = \pm \dfrac{\sqrt{15}}{3} \\\end{array}\right

Значит (0; \ 0), \left(-\dfrac{\sqrt{15}}{3}; \ 0 \right) и \left(\dfrac{\sqrt{15}}{3}; \ 0 \right) — точки пересечения с осью Ox.

4) Асимптот данная функция не имеет, поскольку она непрерывная на всей области определения.

5) Найдем производную и критические (стационарные) точки функции:

f'(x) = (3x^{5} - 5x^{3})'= 15x^{4} - 15x^{2}

Из уравнения 15x^{4} - 15x^{2} = 0 имеем критические точки:

x_{1} = -1; \ x_{2} = 0; \ x_{3} = 1

6) Найдем промежутки возрастания, убывания и экстремумы функции, заполнив таблицу (см. вложение).

7) Исследуем функцию на выпуклость и точки перегиба с второй производной:

f''(x) = (15x^{4} - 15x^{2})' = 60x^{3} - 30x

Если на промежутке (a; \ b) дифференцируемая функция f(x) имеет положительную вторую производную, то есть f''(x) 0 для всех x \in (a; \ b), то график этой функции на (a; \ b) является выпуклым вниз; если на промежутке (a; \ b) дифференцируемая функция f(x) имеет отрицательную вторую производную, то есть f''(x) < 0 для всех x \in (a; \ b), то график этой функции на (a; \ b) является выпуклым вверх.

Решим уравнение: f''(x) = 0

60x^{3} - 30x = 0

30x(2x^{2} - 1) = 0

Имеем корни: x_{1} = -\dfrac{\sqrt{2}}{2} ; \ x_{2} = 0; \ x_{3} = \dfrac{\sqrt{2}}{2}

Систематизируем данные, полученные по второй производной, в таблице (см. вложение)

8) Изобразим график заданной функции (см. вложение).

9) Из графика можем найти область значений функции:

E(f) = (-\infty; \ +\infty), то есть y \in \mathbb{R}


Построить график функции и записать ее свойства: y=3x^5-5x^3
Построить график функции и записать ее свойства: y=3x^5-5x^3
Построить график функции и записать ее свойства: y=3x^5-5x^3
4,5(96 оценок)
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ