Ни один из них не может следить сам за собой. Ни какие двое не могут следить друг за другом. Пусть 001 следит за 003, тогда 003 следит за 002. 002 следит за 001, но тогда 003 следит за тем, кто следит за 001, а не за тем, кто следит за 004. Противоречие. Пусть 001 следит за 004, тогда 004 следит за 002, 002 за 005, 005 за 003, 003 за 001 и одновременно за 006. Противоречие. Пусть 001 следит за 005. Тогда 005 за 002, 002 за 006, 006 за 003, 003 за 007, 007 за 004, 004 за 001. Здесь никаких противоречий нет. ответ: 005 следит за 002.
Опять не подходит. Итак мы доказали, что среди всех нечетных чисел начинающихся от 5 и далее, не будет такой тройки чисел. Можно было бы сказать что таких чисел больше нет. Но если вы внимательно это прочитали, то наверняка заметили бы, что я не рассмотрел в качестве х, число равно 1. Итак Х1=1, Х2=3 и Х3=5 Все числа простые и отличаются на 2, как и требовалось по условию. И данная тройка единственная за исключением, тройки чисел приведенной в условии задачи. Единственность мы доказали выше. ответ 1, 3, 5
Ни какие двое не могут следить друг за другом.
Пусть 001 следит за 003, тогда 003 следит за 002.
002 следит за 001, но тогда 003 следит за тем, кто следит за 001, а не за тем, кто следит за 004. Противоречие.
Пусть 001 следит за 004, тогда 004 следит за 002, 002 за 005,
005 за 003, 003 за 001 и одновременно за 006. Противоречие.
Пусть 001 следит за 005. Тогда 005 за 002, 002 за 006,
006 за 003, 003 за 007, 007 за 004, 004 за 001.
Здесь никаких противоречий нет.
ответ: 005 следит за 002.