В поездке по заповедникам страны принимали участие студенческие и школьные группы - всего 36 групn. Студен- ческие группы составили от общего количества. Сколько школьных групп участвовало в поездке? Можно без
Задачи на принцип Дирихле решаются так, что все элементы надо разложить по ящикам. Среди шести любых различных чисел найдутся по крайней мере два числа, которые при делении на 5 дают одинаковые остатки. При делении на 5 получаются остатки: 0 1 2 3 4 Это и есть ящики. Если все шесть чисел дают разные остатки, то поместив их в пять ящиков, шестое число мы вынуждены будем положить в один из имеющихся ящиков. Таким образом, найдутся два числа которые при делении на 5 дадут одинаковые остатки. Обозначим их (5k+m) и (5n+m) Тогда их разность (5k+m)-(5n+m)=5k-5n=5(k-n) - кратна 5
( х ) учеников, ( у ) скамеек. тогда ( составляем два уравнения) 1. Уравнение для числа учеников. По два ученика на каждой скамейке и ещё семеро стоят, вместе получается общее число учеников.2*х+7=у. 2. Уравнение для числа скамеек. Все ученики расселись по трое на скамейку, и ещё пять скамеек осталось. у/3+5=х 3. Решаем систему уравнений. Вместо "у" во втором уравнении записываем выражение из первого уравнения и приводим к общему знаменателю. Получаем: 2х+7+15=3х. Решаем: х=22-это число скамеек. 4. Подставляем найденный результат в первое уравнение и получаем у=2*22+7=51 -это число учеников. ответ: 22 скамеек, 51 ученик.
В поездке участвовали: 36 групп
студенческие: 36·2/9=72/9=8 группы
школьные: 36-8=28 группы
ответ:28 групп
Пошаговое объяснение: поставь лутший ответ