ответ: 45 (лично мое решение, которое я писала)
Пошаговое объяснение: пронумеруем школьников. 1- самый низкий 6- самый высокий.
Заметим, что во втором ряду обязательно стоит 6 школьник и обязательно не стоит первый школьник (иначе возникнет противоречие, так как нет школьника выше шестого и нет школьника ниже первого)
Рассмотрим варианты, кто может стоять во втором ряду
654, 653, 652, 643, 642.
если во втором ряду стоят 6, 5 и 4, то всего расставить школьников 3!•3=18
если во втором ряду стоят 6,5,3 то кол-во сп-ов = 2•2•1•3= 12
если во втором ряду 6,5,2 то кол-во сп-ов= 1•2•1•3=6
если 6,4,3 то = 2•1•1•3=6
если 6,4,2 то = 1•1•3=3
в итоге так как нам нужно выбрать разные варианты расстановки учеников то есть или одно или другое, то применяем правило сложения.
18+12+6+6+3=45
35π√6/12 см
Пошаговое объяснение:
Воспользуемся формулой, связывающую площадь треугольника и радиус описанной окружности:
S=\frac{abc}{4R} \;\;\Rightarrow \;\;R=\frac{abc}{4S}S=
4R
abc
⇒R=
4S
abc
a, b, c -- стороны треугольника
1. Найдём площадь треугольника по формуле Герона:
S=\sqrt{p(p-a)(p-b)(p-c)}S=
p(p−a)(p−b)(p−c)
p -- полупериметр треугольника
p=\frac{a+b+c}{2}= \frac{4+5+7}{2}= 8\;cmp=
2
a+b+c
=
2
4+5+7
=8cm
S=\sqrt{8(8-4)(8-5)(8-7)}=\sqrt{8\cdot4\cdot3\cdot1}=\sqrt{4^2\cdot6}=4\sqrt{6} \;cm^2S=
8(8−4)(8−5)(8−7)
=
8⋅4⋅3⋅1
=
4
2
⋅6
=4
6
cm
2
2. Подставим известные значения в формулу выше и найдём R:
R=\frac{abc}{4S}=\frac{4\cdot5\cdot7}{4\cdot4\sqrt{6}}=\frac{35}{4\sqrt{6}} =\frac{35\sqrt{6} }{24} \;cmR=
4S
abc
=
4⋅4
6
4⋅5⋅7
=
4
6
35
=
24
35
6
cm
3. Найдём длину окружности:
l=2\pi R=2\pi\cdot\frac{35\sqrt{6} }{24} = \frac{35\pi\sqrt{6} }{12}\;cml=2πR=2π⋅
24
35
6
=
12
35π
6
cm
2х-4-1=5х-10-7
-3х=-12
х=4
у+20=-у
2у=-20
у=-10
4(2х-6)=4х-4
8x-24=4x-4
4x=20
x=5
-9у+3=3(8у+45)
-9y+3=24y+135
-33y=132
y=-4
20+5х=44+х
4y=24
y=6