4. Была цена х, увеличили на 0,2х, стал стоить 1,2х
Затем снова повысили товар на 1,2*0,2=0,24 и он стал стоить 1,2х+0,24х=1,44х
За два раза цена товара увеличилась на ((1,44х-х)/х )*100%=44% по сравнению с первоначальной.
ответ на 44%, верный ответ Г
5. (х+19)*(х-3)-(2х-1)(2х+1)≥х-38
х²-3х+19х-57-4х²+1-х≥-38
-3х²+15х-56+38≥0
-3х²+15х-18≥0
х²-5х+6≤0
по теореме, обратной теореме Виета, х= 2,х=3
нанесем на координатную ось числа 2 и 3, они разобьет ось на три промежутка (-∞;2]; (2;3];(3;+∞)
Выясним знаки на каждом из промежутков. подставив любое число из указанных промежутков. Нас интересуют те значения х, при которых левая часть неположительна, это отрезок х∈[2;3]
Дано точки K(5;0;3), M(-1;2;0), N(1;-4;1) і площину a яка має рівняння 2x+2y-z+2=0.
1) Яке рівняння площини бета яка проходить через точку K і перпендикулярна до вектора MN?
Находим вектор MN = (1-(-1); -4-2; 1-0) = (2; -6; 1).
Этот вектор будет нормальным вектором искомой плоскости.
Определяем уравнение плоскости, проходящей через точку К .
2(x - 5) - 6(y - 0) + 1(z - 3) = 2x -6y + 1z - 13 = 0.
ответ: 2x - 6y + z - 13 = 0.
2) яке рівняння прямої (l1), що проходить через точки M і N?
Вектор MN уже найден и равен (2; -6; 1).
Отсюда уравнение прямой:
MN: (x + 1)/2 = (y - 2)/(-6) = (z - 0)/1.
ответ: (x + 1)/2 = (y - 2)/(-6) = z/1.
3) яке рівняння прямої (l2), що проходить через точку K і перпендикулярна площині a?
Плоскость а - это заданная плоскость 2x+2y-z+2=0.
Её нормальный вектор (2; 2; -1) будет направляющим вектором для прямой, проходящей через точку К перпендикулярно к заданной плоскости.
ответ: (x - 5)/2 = y/2 = (z - 3)/(-1).