В один круг это означает, что каждая команда может сыграть с любой другой командой не более 1 раза? Если да, то:
У одной команды число сыгранных матчей должно быть не более 17-ти. Пусть в какой-то момент НЕ найдутся две команды, сыгравшие одинаковое число игр. У всех команд должны быть разное количество сыгранных матчей. Необходимо 18 разных цифр - кол-во матчей у всех команд. При этом эти цифры должны находиться в отрезке [0;17]. Единственный доступный вариант, удовлетворяющий данным условиям, - ряд идущих подряд цифр от 0 до 17. Если одна из команд сыграла 17 матчей, то она должна была сыграть со всеми командами хотя бы по одному разу. А мы видим, что одна из команд не сыграла ни одного матча. Мы использовали метод "от противного" и пришли к логическому противоречию. Это означает, что в любой момент найдутся две команды,сыгравшие одинаковое число игр.
Извиняюсь за тяжелое, возможно, для восприятие решение.
1/2 и 1/3 - общий знаменатель 6 1/2 и 1/5 - общий знаменатель 10 1/2 и 1/7- общий знаменатель 14 1/2 и 1/9- общий знаменатель 18 1/2 и 2/3 - общий знаменатель 6 1/2 и 3/5 - общий знаменатель 10 1/2 и 6/7- общий знаменатель 14 1/2 и 7/9- общий знаменатель 18 1/7 и 1/8- общий знаменатель 56 3/7 и 5/8- общий знаменатель 56 1/10 и 1/11- общий знаменатель 110 3/10 и 10/11- общий знаменатель 110 1/10 и 1/13- общий знаменатель130 1/10 и 2/13- общий знаменатель130 3/10 и 4/14- общий знаменатель140 9/10 и 12,13- общий знаменатель130
Было 1/2 и 1/3, стало: 3/6 и 2/6 (общий знаменатель 6. чтобы 1/2 стала со знаменателем 6 надо числитель и знаменатель умножить на 3. получается из 1/2 ---3/6 т.есть и сверху и снизу в три раза больше 1/3 чтобы привести к такомуже знаменателю 6 надо умножить на 2. получаем из 1/32/6) 5/10 и 2/10 7/14 и 2/14 9/18 и 2/18 3/6 и 4/6 5/10 и 6/10 7/14 и 12/14 9/18 и 14/18 8/56 и 7/56 24/56 и 35/56 11/110 и 10/110 33/110 и 100/110 13/130 и 10/130 13/130 и 20/130 42/140 и 40/140 117/130 и 120/130 (наверно в этом задании опечатка и должно быть 12/13
У одной команды число сыгранных матчей должно быть не более 17-ти. Пусть в какой-то момент НЕ найдутся две команды, сыгравшие одинаковое число игр.
У всех команд должны быть разное количество сыгранных матчей. Необходимо 18 разных цифр - кол-во матчей у всех команд. При этом эти цифры должны находиться в отрезке [0;17]. Единственный доступный вариант, удовлетворяющий данным условиям, - ряд идущих подряд цифр от 0 до 17.
Если одна из команд сыграла 17 матчей, то она должна была сыграть со всеми командами хотя бы по одному разу. А мы видим, что одна из команд не сыграла ни одного матча.
Мы использовали метод "от противного" и пришли к логическому противоречию. Это означает, что в любой момент найдутся две команды,сыгравшие одинаковое число игр.
Извиняюсь за тяжелое, возможно, для восприятие решение.