7
Пошаговое объяснение:
Каждый раз смотрим только на последние цифры
33^1 оканчиватся 3(3*1=3)
33^2=33^1*33 оканчивается 9(3*3=9)
33^3=33^2*33 оканчивается 7(9*3=27)
33^4=33^3*33 оканчивается 1(7*3=21)
33^5=33^4*33 оканчивается 3(1*3=3)
33^6=33^5=33 оканчивается 9(3*3=9
...
...
Очевидно, что степени будут повторяться каждые 4 умножения(окончаниями 33^1, 33^5, 33^9, 33^13, 33^(13+4n) ... будет цифра 3)
33^(1+4n) оканчивается на 3
33^(2+4n) оканчивается на 9
33^(3+4n) оканчивается на 7
33^(4n) оканчивается на 1
Где n-целое неотрицательные число.
Поделим 2015 на 4 с остатком:2015=503*4(ост. 3)
33^2015=33^(3+4*503) имеет такую же последнюю цифру, как и 33^3 равную 7
16p=1/21
p=1/(16*21)
np=1/14
p=1/(14n)
14n=16*21
n=24
ответ: 24 каменщика
2) 9 платьев - 2,25
15 платьев - х
х=2,25*15/9=3,75
ответ: 3,75 метров
3) 3+|x|=5
|x|=5-3=2
x=2
x=-2
ответ: 2 и -2