Пусть Таня съела t конфет, Маша m конфет, а Катя k конфет. Тогда получим систему уравнений: t+m=11 m+k=15 t+k=14
Из первого уравнения t=11-m. Из второго уравнения k=15-m. Подставим эти выражения в третье уравнение: 11-m+(15-m)=14 26-2m=14 26-14=2m 2m=12 m=6 (конфет) - столько конфет съела Маша. Из первого уравнения t=11-m=11-6=5 (конфет) - столько конфет съела Таня. Из второго уравнения k=15-m=15-6=9 (конфет) - столько конфет съела Катя. Тогда общее количество съеденных конфет составит: m+t+k=6+5+9=20 (конфет).
Можно решить задачу проще: просуммируем все три уравнения системы: t+m+m+k+t+k=11+15+14 2t+2m+2k=40 2(t+m+k)=40 t+m+k=40/2=20 (конфет)
Единицы измерения должны быть одинаковые, поэтому минуты переводим в часы 6мин/60=1/10=0,1часа х-скорость плановая 42/х-время по плану
х+10-скорость реальная 42/(х+10)-время реальное (знаменатель увеличился, т.е. время уменьшилось по сравнению с планом) и это время меньше планового на 0,1ч. Т.е. если мы к реальному времени прибавим 0,1,то получим время по плану
42/х=42/(х+10) + 0,1 дальше умножаем право и лево уравнения на х(х+10)
42х(х+10)/х=42х(х+10)/(х+10) + 0,1х(х+10) тут 42х(х+10)/х сокращаются иксы,остается 42(х+10) тут 42х(х+10)/(х+10) сокращаются (х+10),остается 42х Получается 42(х+10)=42х+ 0,1х(х+10) открываем скобки 42х+420=42х+0,1х²+х далее переносим всё в одну сторону и решаем квадратное уравнение 0,1х²+х-420=0 D = 1² - 4·0.1·(-420) = 1 + 168 = 169 x1 = (-1 - √169)/(2·(0.1)) = (-1 - 13)/0.2 = -14/0.2 = -140/2=-70 -не подходит x1 = (-1 + √169)/(2·(0.1)) = (-1 + 13)/0.2 =12/0.2 =120/2=60 км/ч-скорость плановая 60+10=70км/ч-скорость реальная (после переезда)
вот решение зарание не зашто