М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
larisa115
larisa115
04.05.2021 12:11 •  Математика

Выполните действие
-6,2×3,4;

👇
Ответ:
R1FL
R1FL
04.05.2021

Пошаговое объяснение:

-6,2×3,4 = - 21, 08

4,5(23 оценок)
Ответ:
мадина488
мадина488
04.05.2021

21, 08

Правельный ответ! Удачи

4,4(81 оценок)
Открыть все ответы
Ответ:
madamburkova20
madamburkova20
04.05.2021

Одним из наиболее мощных методов интегрирования является замена переменной в интеграле. Поясним суть этого метода. Пусть F'(x)=f(x), тогда

\int f(x)\,dx= \int F'(x)\,dx= \int d\bigl(F(x)\bigr)=F(x)+C.

Но в силу инвариантности формы дифференциала равенство d\bigl(F(x)\bigr)=F'(x)\,dx= f(x)\,dx остается справедливым и в случае, когда {x} — промежуточный аргумент, т.е. x=\varphi(t). Это значит, что формула \textstyle{\int f(x)\,dx=F(x)+C} верна и при x=\varphi(t). Таким образом,

\int f\bigl(\varphi(t)\bigr)\,d\bigl(\varphi(t)\bigr)= F\bigl(\varphi(t)\bigr)+C, или \int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt= F\bigl(\varphi(t)\bigr)+C.

Итак, если F(t) является первообразной для f(x) на промежутке {X}, а x=\varphi(t) — дифференцируемая на промежутке {T} функция, значения которой принадлежат {X}, то F\bigl(\varphi(t)\bigr) — первообразная для f\bigl(\varphi(t)\bigr)\varphi'(t),~t\in T, и, следовательно,

\int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt= \int f(x)\,dx\,.

Эта формула позволяет свести вычисление интеграла \textstyle{\int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt} к вычислению интеграла \textstyle{\int f(x)\,dx}. При этом мы подставляем вместо \varphi(t) переменную {x}, а вместо \varphi'(t)\,dt дифференциал этой переменной, т. е. dx. Поэтому полученная формула называется формулой замены переменной под знаком неопределенного интеграла. Она используется на практике как "слева направо", так и "справа налево". Метод замены переменной позволяет сводить многие интегралы к табличным. После вычисления интеграла \textstyle{\int f(x)\,dx} надо снова заменить {x} на \varphi(t).

Пример 1. Вычислим \int\cos2t\,dt.

Решение. Введем новую переменную {x}, положив 2t=x. Тогда 2\,dt=dx,~dt=\frac{1}{2}\,dx и, следовательно,

\int\cos2t\,dt= \int\cos{x}\,\frac{1}{2}\,dx= \frac{1}{2}\int\cos{x}\,dx= \frac{1}{2}\sin{x}+C= \frac{1}{2}\sin2t+C.

Замечание. Вычисление короче записывают так:

\int\cos2t\,dt= \frac{1}{2}\int\cos2t\,d(2t)= \frac{1}{2}\sin2t+C.

Пошаговое объяснение:

4,5(71 оценок)
Ответ:
uhudongoair
uhudongoair
04.05.2021
Координаты точки М могут быть: М1( х; 0; 0;); М2(0;y;0); М3(0;0;z),
Расстояние между М1 и А: √((4-х)²+(-3-0)²+(0-0)²)=√(16-8х +х²+9)  =5,
х²-8х+25 =25,  х(х-8)=0, т е таких точек 2 : М11( 0,0,0) и М12(8,0,0,),
Расстояние между М2 и А - √((4-0)²+(-3-y)²+(0-0)²)=√(16+9+6y+y²) =5,
y²+6y+25 =25, y(y+6)=0 , т е таких точек 2: М21(0,0,0) и М22(0,-6,0),
Расстояние между М3 и А : √((4-0)²+(-3-0)²+(0-z)²) =√(16+9+z²) =5,
25+z²=25, т е М3(0,0,0,), М11, М21, М3- это одна  та же точка, 
ответ: М1( 8,0,0),  M2(0,-6,0), M3(0,0,0)
4,5(69 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ