Вроде правельный ответ (А)
\dispaystyle f(x)=3x^2-4x+2\dispaystylef(x)=3x
2
−4x+2
\dispaystyle F(x)=3* \frac{x^3}{3}-4* \frac{x^2}{2}+2x+C=x^3-2x^2+2x+C\dispaystyleF(x)=3∗
3
x
3
−4∗
2
x
2
+2x+C=x
3
−2x
2
+2x+C
\begin{gathered}\dispaystyle A(-1;0)\\F(-1)=0\\F(-1)=(-1)^3-2(-1)^2+2(-1)+c=-1-2-2+C=-5+C=0\\C=5\end{gathered}
\dispaystyleA(−1;0)
F(−1)=0
F(−1)=(−1)
3
−2(−1)
2
+2(−1)+c=−1−2−2+C=−5+C=0
C=5
2)
\dispaystyle f(x)=cos \frac{x}{2}\dispaystylef(x)=cos
2
x
\dispaystyle F(x)=2sin \frac{x}{2}+ C\dispaystyleF(x)=2sin
2
x
+C
\begin{gathered}\dispaystyle A( \frac{ \pi }{3};1)\\F( \frac{ \pi }{3})=1 \end{gathered}
\dispaystyleA(
3
π
;1)
F(
3
π
)=1
\begin{gathered}\dispaystyle F( \frac{ \pi }{3})=2sin ( \frac{ \pi }{3}/2)+ C=2sin \frac{ \pi }{6}+ C=2* \frac{1}{2}+C=1+C=1\\C=0 \end{gathered}
\dispaystyleF(
3
π
)=2sin(
3
π
/2)+C=2sin
6
π
+C=2∗
2
1
+C=1+C=1
C=0
ответ: x1=-1, x2=3, x3=0.
Пошаговое объяснение:
1) Решение методом Гаусса.
1. Умножим второе уравнение системы на -2, после чего прибавим к нему первое уравнение и заменим второе уравнение этой суммой. Получим систему:
2*x1+6*x2+x3=16
-3*x3=0
x2+x3=3
2. Из второго уравнения находим x3=0.
3. Подставляя это значение в третье уравнение, находим x2=3.
4. Подставляя x2=3 и x3=0 в первое уравнение, находим x1=-1.
Проверка:
2*(-1)+6*3+0=16
-1+3*3+2*0=8
3+0=3
Вместо равенств получены верные тождества - значит, решение найдено верно.
2) Решение методом Крамера.
1. Составляем и вычисляем определитель системы:
Δ= 2 6 1 = 2*(3*1-2*1)-1*(6*1-1*1)+0=2-5=-3
1 3 2
0 1 1
2. Составляем и вычисляем Δ1:
Δ1 = 16 6 1 = 16*(3*1-2*1)-6*(8*1-2*3)+1*(8*1-3*3)=3
8 3 2
3 1 1
3. Составляем и вычисляем Δ2:
Δ2 = 2 16 1 = 2*(8*1-2*3)-1*(16*1-1*3)+0=-9
1 8 2
0 3 1
4. Составляем и вычисляем Δ3:
Δ3 = 2 6 16 = 2*(3*3-8*1)-1*(6*3-16*1)+0=0
1 3 8
0 1 3
5. Находим x1=Δ1/Δ=3/(-3)=-1, x2=Δ2/Δ=-9/(-3)=3, x3=Δ3/Δ=0/(-3)=0.
единиц - 1, десятков - 1+2=3, число - 31
ед - 2, дес - 2+2=4, число - 42
ед - 3, дес - 3+3=5, число - 53
и дальше - 64, 75, 86, 97, все, двузначные кончились.