х≠-1, все остальные х в основании подходят. основание больше единицы, поэтому при х≠-1
(х²+3х+2)/(х²-3х+4)>0
(х²+3х+2)/(х²+3х+2)≤1
Решаем первое неравенство. оно строгое. По Виету корни числителя -1 и -2; и дискриминант знаменателя меньше нуля, старший коэффициент положителен, D= 9-16 отрицат., значит, знаменатель положителен всегда.
тогда ОДЗ
___-2-1 х∈(-∞;-2)∪(-1;+∞)
+ - +
второе неравенство (х²+3х+2)/(х²-3х+4)≤1;
(х²+3х+2)/(х²-3х+4)-1≤0;после приведения к общему знаменателю сократим уравнение на положительную величину (х²-3х+4),
х²+3х+2-(х²-3х+4)≤0; 3х+2+3х-4≤0⇒6х≤2; х≤1/3
С учетом ОДЗ х∈(-∞;-2)∪ (-1;1/3]
x - исходное количество автомобилей на 2-й стоянке.
3x-15=x+5
2x=5+15
x=20/2=10 - исходное количество автомобилей на 2-й стоянке.
3·10=30 - исходное количество автомобилей на 1-й стоянке.