Как я понял, нужно найти площадь двух симметричных фигур, ограниченных окружностью и которые лежат вне параболы.
Найдем площадь этих двух частей (первая из них показана на втором рисунке; их площади совпадают). Очевидно, площадь фигуры равна разности между площадью полукруга и площадью криволинейной трапеции (*), заданной формулой y²=2x; y²=4x-x² ⇔ -y²=x²-4x=(x-2)²-4 ⇔ (x-2)²+y² = 4; Значит радиус окружности равен 2; Центр окружности (2;0). найдем точки пересечения (параболы и окружности): -x²+4x=2x ⇔ -x²+2x=0; x=0 или x=2; отсюда точки пересечения: (0;0), (2;2), (2;-2). (Вообще нужно было через модули решать, но из графика много что видно, так что я упростил). Итак, осталось найти только площадь. Из (*) нужно найти площадь полукруга. Она равна Площадь части параболы равна
Перепишем уравнения в цилиндрической системе координат: (x, y, z) меняются на (r, φ, z) по формулам x = r cos(φ - arctg 3/4), y = r sin(φ - arctg 3/4) – арктангенс возник из соображений удобства, чтобы третье уравнение выглядело поприличнее. Откуда отсчитывать углы, для нас не принципиально.
Первое уравнение:
Второе уравнение не меняется.
Третье уравнение:
Итак, уравнения поверхностей, ограничивающих тело, выписаны выше: r = 2, z = 1, z = 12 - 5r sin φ. Тело, которое они ограничивают, изображено на приложенном рисунке: это часть цилиндра, вырезанная двумя плоскостями.
Сформулируем условия в виде неравенств. 1 ≤ z ≤ 12 - 5r sin φ 0 ≤ φ ≤ 2π 0 ≤ r ≤ 2
Осталось вспомнить, что элемент объёма в цилиндрических координатах есть dV = r dr dφ dz, и вычислить интеграл:
ответ: 44π.
________________________________________
Для самопроверки получим этот ответ без интеграла. Самая нижняя точка, в которой наклонная плоскость пересекает цилиндр, это z = 12 - 5 * 2 = 2, самая высокая – z = 12 + 5 * 2 = 22. Тогда объём равен сумме объёма цилиндра с высотой 2 - 1 = 1 и половины объёма цилиндра с высотой 22 - 2 = 20. V = S * (h1 + h2 / 2) = 4π * (1 + 10) = 44π
84
Пошаговое объяснение:
1536-x=1452
-x=1452-1536
-x=-84
x=84