Пусть R > 3, тогда никакие две мухи не сидят на одном ребре. Каждое ребро принадлежит двум граням, значит, из трёх рёбер какие-то два лежат в одной грани (в противном случае граней должно быть не меньше 2 * 3 = 6, а их всего 4. Рассмотрим пути между мухами, которые сидят в этой грани.
Эта грань — треугольник с периметром P = 3 * 3 = 9. Между мухами, сидящими в этой грани, есть два пути (см. рисунок, красный и зелёный), суммарная длина которых равна 9. Значит, кратчайший путь не длиннее 9/2 = 4,5.
Пример, как могут сидеть мухи, чтобы R было равно 4,5, на второй картинке.
После долгих мучений... Обращаем внимание на произведение ДДЕЕ, оно делится на 11. Число делится на 11, если сумма цифр, которые стоят на чётных местах равна сумме цифр, стоящих на нечётных местах, либо отличается от неё на 11. На чётных местах стоят Д и Е, на нечётных тоже Д и Е. Следовательно, число ДДЕЕ делится на 11. Теперь смотрим на множители. Хотя бы один из них должен тоже делиться на 11, иначе их произведение не разделится на 11. Ни АБ, ни ВГ не делятся на 11 по признаку делимости на 11. Итак, мнтожители не делятся на 11, а их произведение - делится. Так не бывает. ответ: 0
-3*11+9=-33+9=-24
Пошаговое объяснение:
можно кращу відповідь