(4 корень из 27- кубический корень из 32)-(кубический корень из 108+3 корень из 48) = (4 корень из 9*3- кубический корень из 8*4)-(кубический корень из 27*4+3 корень из 16*3) = (12 корень из 3 - 2 кубический корень из 4)-(3 кубический корень из 4+ 12 корень из 3) = 12 корень из 3 - 2 кубический корень из 4 - 3 кубический корень из 4- 12 корень из 3 = -5 кубический корень из 4
1. Запишите окончание предложения: 1) многочленом называют выражение, которое является ... суммой определенного количества одночленов; 2) многочлен, состоящий из двух членов, называют ...двучленом; 3) многочлен, состоящий из трёх членов, называют ...трехчленом; 4) многочленом стандартного вида называют многочлен, состоящий из ...одночленов, приведенных к стандартному виду; 5) степенью многочлена стандартного вида называют .... наибольшую степень одночлена, входящего в данный многочлен.
Чтобы понимать данные определения надо знать следующее: Одночлен - это алгебраическое выражение, которое состоит из произведения чисел, переменных, каждая из которых может входить в произведение в некоторой степени. Пример: . Есть константа(число) и переменные, содержащие степень. А например одночленом уже не будет. Далее, Одночлен называется представленным в стандартном виде, если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных. т.е. например . Окей, дальше.
2. Какова степень многочлена: Определение степени мы уже знаем, так что легко решим. Очевидно, что тут это Точно также, тут тройка. Тут единица. Тут не очень понял условие, но в любом случае роли это не играет, ответ тут шесть(т.к. x во второй и y в четвертой в сумме дают 6). 3. Запишите многочлен в стандартном виде. 4. Запишите многочлен в стандартном виде. Тут я опять не уверен, что правильно понял степени. Но думаю, если я где-то ошибся, то вы справитесь самостоятельно, тут простые задачи. 5. Запишите выражение в виде: 1) суммы каких-либо двучленов; 2) разности каких-либо двучленов; 3) суммы одночлена и трёхчлена; 4) разности трёхчлена и одночлена. 6. Запишите в стандартном виде сумму многочленов и . 7. Запишите в стандартном виде разность многочленов и . 8. Запишите в стандартном виде разность многочленов и .
1. Запишите окончание предложения: 1) многочленом называют выражение, которое является ... суммой определенного количества одночленов; 2) многочлен, состоящий из двух членов, называют ...двучленом; 3) многочлен, состоящий из трёх членов, называют ...трехчленом; 4) многочленом стандартного вида называют многочлен, состоящий из ...одночленов, приведенных к стандартному виду; 5) степенью многочлена стандартного вида называют .... наибольшую степень одночлена, входящего в данный многочлен.
Чтобы понимать данные определения надо знать следующее: Одночлен - это алгебраическое выражение, которое состоит из произведения чисел, переменных, каждая из которых может входить в произведение в некоторой степени. Пример: . Есть константа(число) и переменные, содержащие степень. А например одночленом уже не будет. Далее, Одночлен называется представленным в стандартном виде, если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных. т.е. например . Окей, дальше.
2. Какова степень многочлена: Определение степени мы уже знаем, так что легко решим. Очевидно, что тут это Точно также, тут тройка. Тут единица. Тут не очень понял условие, но в любом случае роли это не играет, ответ тут шесть(т.к. x во второй и y в четвертой в сумме дают 6). 3. Запишите многочлен в стандартном виде. 4. Запишите многочлен в стандартном виде. Тут я опять не уверен, что правильно понял степени. Но думаю, если я где-то ошибся, то вы справитесь самостоятельно, тут простые задачи. 5. Запишите выражение в виде: 1) суммы каких-либо двучленов; 2) разности каких-либо двучленов; 3) суммы одночлена и трёхчлена; 4) разности трёхчлена и одночлена. 6. Запишите в стандартном виде сумму многочленов и . 7. Запишите в стандартном виде разность многочленов и . 8. Запишите в стандартном виде разность многочленов и .