М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
adilesha
adilesha
14.10.2021 05:58 •  Математика

Сравните уравнения в каждой строке. в каком из двух уравнений меньше решение? а) х+366=600-178 х+366=600+178 б)у: 132=201-198 у; 132=201-197 какое из этих уравнений составлено к лики? под древним дубом костя нашёл глиняный кувшин с монетами 17 века: сначала там было 366 медных и несколько золотых. когда 178медных алтынов из кувшина достали , в нём осталось 600 монет. сколько золотых монет было в этом глиняном кувшине? сколько копеек составляют 178 алтынов , если 1 алтын=3 коп? реши ещё не по уравнению

👇
Ответ:
russianbutcher2
russianbutcher2
14.10.2021
600-366= 234 золотые монеты былы в кувшине
4,6(87 оценок)
Открыть все ответы
Ответ:
milka293
milka293
14.10.2021

2, 8, 16, 24, 66, 150 — делятся на 2, так как последняя цифра этих чисел четная;

3, 7, 19, 35, 77, 453 — не делятся на 2, так как последняя цифра этих чисел нечетная.

Признак делимости на 3

Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.

Например:

75 — делится на 3, так как 7+5=12, и число 12 делится на 3 (12:3=4);

471 — делится на 3, так как 4+7+1=12, и число 12 делится на 3 (12:3=4);

532 — не делится на 3, так как 5+3+2=10, а число 10 не делится на 3 (10:3=313).

Признак делимости на 4

Число делится на 4 тогда и только тогда, когда две его последние цифры составляют число, которое делится на 4. Двузначное число делится на 4 тогда и только тогда, когда удвоенное число десятков, сложенное с числом единиц делится на 4.

Например:

4576 — делится на 4, так как число 76 делится на 4 (7·2+6=20, 20:4=5);

9634 — не делится на 4, так как число 34 не делится на 4 (3·2+4=10, 10:4=212).

Признак делимости на 5

Число делится на 5 тогда, когда последняя цифра делится на 5, т.е. если она 0 или 5.

Например:

375, 5680, 233575 — делятся на 5, так как их последняя цифра равна 0 или 5;

9634, 452, 389753 — не делятся на 5, так как их последняя цифра не равна 0 или 5.

Признак делимости на 6

Число делится на 6 тогда и только тогда, когда оно делится и на 2, и на 3, то есть если оно четное и сумма его цифр делится на 3.

Например:

462 — делятся на 6, по признаку делимости на 2 оно делится на 2 (последняя цифра 2 делится на 2), по признаку делимости на 3 оно делится на 3 (сумма цифр числа делится на 3: 4+6+2=12, 12:3=4);

3456 — делятся на 6, по признаку делимости на 2 оно делится на 2 (последняя цифра 6 делится на 2), по признаку делимости на 3 оно делится на 3 (сумма цифр числа делится на 3: 3+4+5+6=18, 18:3=6);

24642 — делятся на 6, по признаку делимости на 2 оно делится на 2 (последняя цифра 2 делится на 2), по признаку делимости на 3 оно делится на 3 (сумма цифр числа делится на 3: 2+4+6+4+2=18, 18:3=6);

861 — не делятся на 6, так как по признаку делимости оно не делится на 2;

3458 — не делятся на 6, так как по признаку делимости оно не делится на 3;

34681 — не делятся на 6, так как по признаку делимости оно не делится на 2.

Признак делимости на 9

Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Например:

468, 4788, 69759 — делятся на 9, так как сумма их цифр делится на девять (4+6+8=18, 4+7+8+8=27, 6+9+7+5+9=36);

861, 3458, 34681 — не делятся на 9, так как сумма их цифр не делится на девять (8+6+1=15, 3+4+5+8=20, 3+4+6+8+1=22).

Признак делимости на 10

Число делится на 10 тогда и только тогда, когда оно оканчивается на нoль.

Например:

460, 24000, 1245464570 — делятся на 10, так как последняя цифра этих чисел равна нулю;

234, 25048, 1230000003 — не делятся на 10, так как последняя цифра этих чисел не равна нулю.

Признак делимости на 11

Число делится на 11 если сумма цифр стоящих на четных местах равна сумме цифр стоящих на нечетных местах или отличается от нее на число кратное 11.

Например:

242 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 2 + 2 = 4; сумма цифр на четных позициях S2n = 4 и S2n+1 = S2n.

319 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 3 + 9 = 12; сумма цифр на четных позициях S2n = 1, а их разность S2n+1 - S2n = 11 - делится на 11.

919380 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 9 + 9  + 8 = 26; сумма цифр на четных позициях S2n = 1 + 3 + 0 = 4, а их разность S2n+1 - S2n = 22 - делится на 11.

2838 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 2 + 3 = 5; сумма цифр на четных позициях S2n = 8+ 8 = 16, а их разность S2n - S2n+1 = 11 - делится на 11.

244 — не делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 2 + 4 = 6; сумма цифр на четных позициях S2n = 4 и S2n+1 - S2n = 2 - не делится на 11.

4,5(91 оценок)
Ответ:
angalena
angalena
14.10.2021

2, 8, 16, 24, 66, 150 — делятся на 2, так как последняя цифра этих чисел четная;

3, 7, 19, 35, 77, 453 — не делятся на 2, так как последняя цифра этих чисел нечетная.

Признак делимости на 3

Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.

Например:

75 — делится на 3, так как 7+5=12, и число 12 делится на 3 (12:3=4);

471 — делится на 3, так как 4+7+1=12, и число 12 делится на 3 (12:3=4);

532 — не делится на 3, так как 5+3+2=10, а число 10 не делится на 3 (10:3=313).

Признак делимости на 4

Число делится на 4 тогда и только тогда, когда две его последние цифры составляют число, которое делится на 4. Двузначное число делится на 4 тогда и только тогда, когда удвоенное число десятков, сложенное с числом единиц делится на 4.

Например:

4576 — делится на 4, так как число 76 делится на 4 (7·2+6=20, 20:4=5);

9634 — не делится на 4, так как число 34 не делится на 4 (3·2+4=10, 10:4=212).

Признак делимости на 5

Число делится на 5 тогда, когда последняя цифра делится на 5, т.е. если она 0 или 5.

Например:

375, 5680, 233575 — делятся на 5, так как их последняя цифра равна 0 или 5;

9634, 452, 389753 — не делятся на 5, так как их последняя цифра не равна 0 или 5.

Признак делимости на 6

Число делится на 6 тогда и только тогда, когда оно делится и на 2, и на 3, то есть если оно четное и сумма его цифр делится на 3.

Например:

462 — делятся на 6, по признаку делимости на 2 оно делится на 2 (последняя цифра 2 делится на 2), по признаку делимости на 3 оно делится на 3 (сумма цифр числа делится на 3: 4+6+2=12, 12:3=4);

3456 — делятся на 6, по признаку делимости на 2 оно делится на 2 (последняя цифра 6 делится на 2), по признаку делимости на 3 оно делится на 3 (сумма цифр числа делится на 3: 3+4+5+6=18, 18:3=6);

24642 — делятся на 6, по признаку делимости на 2 оно делится на 2 (последняя цифра 2 делится на 2), по признаку делимости на 3 оно делится на 3 (сумма цифр числа делится на 3: 2+4+6+4+2=18, 18:3=6);

861 — не делятся на 6, так как по признаку делимости оно не делится на 2;

3458 — не делятся на 6, так как по признаку делимости оно не делится на 3;

34681 — не делятся на 6, так как по признаку делимости оно не делится на 2.

Признак делимости на 9

Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Например:

468, 4788, 69759 — делятся на 9, так как сумма их цифр делится на девять (4+6+8=18, 4+7+8+8=27, 6+9+7+5+9=36);

861, 3458, 34681 — не делятся на 9, так как сумма их цифр не делится на девять (8+6+1=15, 3+4+5+8=20, 3+4+6+8+1=22).

Признак делимости на 10

Число делится на 10 тогда и только тогда, когда оно оканчивается на нoль.

Например:

460, 24000, 1245464570 — делятся на 10, так как последняя цифра этих чисел равна нулю;

234, 25048, 1230000003 — не делятся на 10, так как последняя цифра этих чисел не равна нулю.

Признак делимости на 11

Число делится на 11 если сумма цифр стоящих на четных местах равна сумме цифр стоящих на нечетных местах или отличается от нее на число кратное 11.

Например:

242 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 2 + 2 = 4; сумма цифр на четных позициях S2n = 4 и S2n+1 = S2n.

319 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 3 + 9 = 12; сумма цифр на четных позициях S2n = 1, а их разность S2n+1 - S2n = 11 - делится на 11.

919380 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 9 + 9  + 8 = 26; сумма цифр на четных позициях S2n = 1 + 3 + 0 = 4, а их разность S2n+1 - S2n = 22 - делится на 11.

2838 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 2 + 3 = 5; сумма цифр на четных позициях S2n = 8+ 8 = 16, а их разность S2n - S2n+1 = 11 - делится на 11.

244 — не делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 2 + 4 = 6; сумма цифр на четных позициях S2n = 4 и S2n+1 - S2n = 2 - не делится на 11.

4,7(50 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ