Дана функция f(x)=2x^3-9x^2+12x. Найти наибольшее значение её на отрезке [0;3].
Находим производную: y' = 6x^2-18x +12 и приравниваем нулю: 6x^2-18x +12 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-18)^2-4*6*12=324-4*6*12=324-24*12=324-288=36;Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√36-(-18))/(2*6)=(6-(-18))/(2*6)=(6+18)/(2*6)=24/(2*6)=24/12=2;x_2=(-√36-(-18))/(2*6)=(-6-(-18))/(2*6)=(-6+18)/(2*6)=12/(2*6)=12/12=1. Имеем 2 критические точки - 3 промежутка значений производной. Находим знаки производной на этих промежутках. x = 0 1 1,5 2 3 y' = 12 0 -1,5 0 12. В точке х = 1 производная переходит с + на -, это точка локального максимума. Но, как видим, после точки х = 2 функция возрастает( знак + производной). Поэтому находим значение функции на правой границе промежутка. х = 3, у = 2*3³-9*3²+12*3 = 54-81+36 = 9.
ответ: максимальное значение функции на заданном промежутке равно 9.
Всего конфет участвовало в игре: 19 + 43 = 62 Пусть у старшего вначале было Х конфет, у младшего - У конфет. 1) старший проиграл младшему половину, т.е Х : 2 = Х/2 Остаток старшего: Х - Х/2 = Х/2: Стало у младшего: У + Х/2; 2) младший проиграл старшему половину:, т.е. (У+Х/2) :2 = У/2 + Х/4; Стало у старшего: Х/2 + (У/2 + Х/4) = 3Х/4 + У/2 Осталось у младшего: У/2 + Х/4; 3) старший проиграл младшему половину: (3Х/4 + У/2) : 2 = 3Х/8 + У/4; Осталось у старшего: 3Х/8 + У/4; Стало у младшего: (У/2 + Х/4) + (3Х/8 + У/4) = 3У/4 + 5Х/8 Мы имеем систему уравнений: {3Х/8 + У/4 = 19; {3У/4 + 5Х/8 = 43; Умножаем первое уравнение на 3 и отнимаем второе: 3(3Х/8 + У/4) - (3У/4 - 5Х/8) = 3*19 - 43; 9Х/8 - 5Х/8 + 3У/4 - 3У/4 = 57 - 43; 4Х/8 = 14 ; Х = 2*14 = 28 (конфет); У = 62 - Х = 62 - 28 = 34 ( конфеты); ответ: До начала игры у старшего было 28 конфет, у младшего 34 конфеты. Проверка: 1) 28 - 28:2 = 14; 34 + 28:2 = 48; 2) 14 + 48:2 = 38; 48 - 48:2 = 24; 3) 38 - 38:2 = 19; 24 + 48:2 = 43; что соответствует условию.
Найти наибольшее значение её на отрезке [0;3].
Находим производную:
y' = 6x^2-18x +12 и приравниваем нулю:
6x^2-18x +12 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-18)^2-4*6*12=324-4*6*12=324-24*12=324-288=36;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-18))/(2*6)=(6-(-18))/(2*6)=(6+18)/(2*6)=24/(2*6)=24/12=2;x_2=(-√36-(-18))/(2*6)=(-6-(-18))/(2*6)=(-6+18)/(2*6)=12/(2*6)=12/12=1.
Имеем 2 критические точки - 3 промежутка значений производной.
Находим знаки производной на этих промежутках.
x = 0 1 1,5 2 3
y' = 12 0 -1,5 0 12.
В точке х = 1 производная переходит с + на -, это точка локального максимума.
Но, как видим, после точки х = 2 функция возрастает( знак + производной).
Поэтому находим значение функции на правой границе промежутка.
х = 3, у = 2*3³-9*3²+12*3 = 54-81+36 = 9.
ответ: максимальное значение функции на заданном промежутке равно 9.