пусть АВСД -ромб,АС-диагональ ,которая делит угол АВД и угол ВСД на равные углы, тоесть угол ВАС=углу САД , угол ВСА=углу АСД . По условию задачи диагональ АС равна стороне ромба например СД . Так же диагональ делит ромб на два треугольника АВС и АСД . Рассмотрим треугольник АСД .АС=СД . Значит треугольник АСД - равносторонний. АД -основа. Согласно свойствам равностороннего треугольника его углы у основы равны , тоесть угол САД равен углу АДС .Поскольку
стороны АВ и СД -паралельные , а диагональ АС пересекает их , то углы ВАС и АСД являются внутренными разносторонними . По условиям теоремы они равны .Согласно решению угол ВАС=САД=АСД . Значит у треугольника АСД все углы равны .Поскольку сумма углов треугольника 180 градусов ,то углы будут равны 60 градусов .АС является общей стороной ,СД параллельна и равна АВ , угол ВАС=АСВ=АВС=60 градусов .Значит угол ВАД =ВСД=120 градусов ,угол АВС=АДС=60 градусов.
2 * 3 * 5 * 7 * 11 + 1= 2311. Число 2311 также простое. [ Т. е. произведение всех подряд идущих простых чисел от первого и до определенного и плюс 1 всегда будет давать простое число? Проверяем:
2 * 3 + 1 = 7,
2 * 3 * 5 + 1 = 31.
Но если числа идут не от первого простого и не подряд, то в результате простое число не всегда получается:
3 * 5 * 7 + 1 = 106 (составное)
2 * 5 * 7 + 1 = 71 (простое)
2 * 3 * 7 + 1 = 43 (простое)
3 * 5 * 7 * 11 + 1 = 1156 (составное)
3 * 11 * 13 + 1 = 430 (составное)
2 * 3 * 11 * 13 + 1 = 859 (простое)
Получается, что число 2 в этой формуле (n = p1 * p2 * … + 1) всегда приводит к простому числу в результате, независимо от того, какие взяты остальные простые числа. Без него всегда получается составное, также независимо от того, как и каком количестве взяты простые.]