Писатели-фантасти, залянувшие в бу РАБОТА В ПАРЕ 6 Определи без транспортира величины углов на рисунках. C С E 3 2) 1 6 80 d 40 50° 702 55° 50° F G N A B D МАТЕМАТИКА В ЖИЗНИ
Чтобы ответ был верен должны соблюдаться два условия. 1 условие: Олины мандаринки + 2 шт. = Юлины мандаринки - 2 шт. 2 условие: (Юлины мандаринки+ 2 шт.) ÷ (Олины мандаринки - 2 шт.) = 2 раза
Проверим ответы по порядку. 1) У Оли 10 мандаринок, у Юли 14 мандаринок. 1 условие соблюдается. 10+2 =14-2 12=12 2 условие соблюдается . (14+2) : (10-2) = 16 : 8 =2 раза ответ верен.
2) У Оли 8 мандаринок , у Юли 12 мандаринок. 1 условие соблюдается. 8+2 = 12-2 10=10 2 условие не соблюдается. (8+2) : (12-2)= 10 :10=1 раз ответ не верен.
3) у Оли 9 мандаринок , у Юли 13 мандаринок. 1 условие соблюдается. 9+2= 13-2 11=11 2 условие не соблюдается. (13+2) : (9-2) = 15 :7= 2 (ост.1) больше в 2 раза, но еще 1 мандаринка в остатке , значит ответ не верен.
ответ №1 - правильный. У Оли 10 мандаринок, у Юли 14 мандаринок. Я не думаю, что для решения задачи в 3 классе допустимо составление системы двух уравнений, поэтому решил методом подбора.
Пошаговое объяснение: а) f(x)= x³ -3x ⇒ f'(x)=3x² - 3. Найдём критические точки: f'(x)=0 ⇒ 3x² - 3=0 ⇒ x²-1=0 ⇒x²=1 ⇒ x₁₂=±1/ Но х= -1 ∉ [0;3], значит х=1 -крит.точка. Найдём значения функции в критической точке и на концах промежутка: f(1)=1³ - 3·1 = -2 f(0)=0³- 3·0= 0 f(3)= 3³-3·3=18. Cледовательно max f(x)=f(3)=18, min f(x)=f(1)= - 2 б) f(x)= x⁴-2x²+3 ⇒ f'(x)= 4x³-4x . Если f'(x)=0, то 4x³-4x =0 ⇒ x(x-1)=0 ⇒ x₁=0, x₂=1 -критические т.очки, они ∈[0 ; 2]. Найдём значения функции в критических точкач и на концах промежутка: f(0) =3
f(1)=1⁴-2·1²+3=2 f(2)=16-8+3=11. Cледовательно max f(x)=f(2)=18, min f(x)=f(1)= 2