На трьох кораблях везуть 394 автомобілі. На першому кораблі було в 3 рази більше авто ,ніж на другому, а на третьому -на 84 авто більше, ніж на другому. Скільки авто було на кожному кораблі.
Прикажем одному солдату выйти из строя! Тогда там останется некоторое количество, которое делится без остатка на 4, одновременно делится без остатка на 5 и одновременно делится без остатка на 6, а это означает, что оно должно делиться на наименьшее общее кратное
Значит искомое число солдат: где – некоторое целое число.
П е р в ы й . п у т ь . р е ш е н и я :
Пусть тогда но не делится на а значит не подходит.
Пусть тогда но не делится на а значит не подходит.
Пусть тогда но не делится на а значит не подходит.
Пусть тогда но не делится на а значит не подходит.
Пусть тогда но не делится на а значит не подходит.
Пусть тогда и – делится на а значит подходит !
И это минимальное число солдат:
В т о р о й . п у т ь . р е ш е н и я :
Как мы выяснили где – некоторое целое число.
Преобразуем где – некоторое целое число.
И это число, с другой стороны кратно семи, т.е. где и – некоторые целые числа.
Итак: ;
;
– правая часть здесь кратна семи, а значит и левая кратная семи, т.е.:
где и – некоторые целые числа.
где и – некоторые целые числа.
что возможно при самом малом а значит:
где ;
;
Т р е т и й . п у т ь . р е ш е н и я :
Как мы выяснили где – некоторое целое число.
Преобразуем где – некоторое целое число.
И это число, с другой стороны кратно семи, т.е. где и – некоторые целые числа.
Итак: ;
;
;
– правая часть здесь кратна семи, а значит и левая кратная семи, т.е.:
Прикажем одному солдату выйти из строя! Тогда там останется некоторое количество, которое делится без остатка на 4, одновременно делится без остатка на 5 и одновременно делится без остатка на 6, а это означает, что оно должно делиться на наименьшее общее кратное
Значит искомое число солдат: где – некоторое целое число.
П е р в ы й . п у т ь . р е ш е н и я :
Пусть тогда но не делится на а значит не подходит.
Пусть тогда но не делится на а значит не подходит.
Пусть тогда но не делится на а значит не подходит.
Пусть тогда но не делится на а значит не подходит.
Пусть тогда но не делится на а значит не подходит.
Пусть тогда и – делится на а значит подходит !
И это минимальное число солдат:
В т о р о й . п у т ь . р е ш е н и я :
Как мы выяснили где – некоторое целое число.
Преобразуем где – некоторое целое число.
И это число, с другой стороны кратно семи, т.е. где и – некоторые целые числа.
Итак: ;
;
– правая часть здесь кратна семи, а значит и левая кратная семи, т.е.:
где и – некоторые целые числа.
где и – некоторые целые числа.
что возможно при самом малом а значит:
где ;
;
Т р е т и й . п у т ь . р е ш е н и я :
Как мы выяснили где – некоторое целое число.
Преобразуем где – некоторое целое число.
И это число, с другой стороны кратно семи, т.е. где и – некоторые целые числа.
Итак: ;
;
;
– правая часть здесь кратна семи, а значит и левая кратная семи, т.е.:
Значит искомое число солдат:
П е р в ы й . п у т ь . р е ш е н и я :
Пусть
Пусть
Пусть
Пусть
Пусть
Пусть
И это минимальное число солдат:
В т о р о й . п у т ь . р е ш е н и я :
Как мы выяснили
Преобразуем
И это число, с другой стороны кратно семи, т.е.
Итак:
что возможно при самом малом
Т р е т и й . п у т ь . р е ш е н и я :
Как мы выяснили
Преобразуем
И это число, с другой стороны кратно семи, т.е.
Итак:
что возможно при самом малом
О т в е т :