Пусть скорость первого велосипедиста равна х км/ч, а второго - у км/ч. Первый и второй велосипедисты проехали 25 км их расстояние (x+у)*1=(x+y) км
На расстоянии 30 км первый велосипедист проезжает на 1 ч быстрее другого,т.е. время затраченное первым велосипедистом равно 30/х, а вторым - 30/у. На весь путь затратили (30/x - 30/y) ч.
Решим систему уравнений
Домножим левую и правую части уравнения на (25-y)y ≠ 0 , получим
По теореме Виета
не удовлетворяет условию, так как скорость не может быть отрицательной.
км/ч - скорость второго велосипедиста
км/ч - скорость первого велосипедиста.
ответ: скорость первого велосипедиста равна 10 км/ч, а второго - 15 км/ч.
5 | 5 7 | 7
1 | 1 |
ответ : 5 * 2 * 7 = 70
2) 36 и 18 18 | 2
36 | 2 9 | 3
18 | 2 3 | 3
9 | 3 1 |
3 | 3
1 |
ответ : 2 * 2 * 3 * 3 = 36
3) 24 и 30 30 | 2
24 | 2 15 | 3
12 | 2 5 | 5
6 | 2 1 |
3 | 3
1 |
ответ : 2 * 2 * 2 * 3 * 5 = 120
ответ | Деление
Пример
14 | 2
7 | 7
1 |