1) 2^8+4^5-8^2=2^8+(2^2)^5-(2^3)^2=2^8+2^10-2^6=2^6*(2^2+2^4-1)=2^6*(4+16-1)=2^6*19=2^5*(2*19)=2^5*38 это выражение делится на 38
(2^5*38)/38=2^5=32 что требовалось доказать
2) 3^11+9^6+27^3=3^11+(3^2)^6+(3^3)^3=3^11+3^12+3^9=3^9*(3^2+3^3+1)=3^9*(9+27+1)=3^9*37=3^8*(3*37)=3^8*111 это выражение делится на 111
(3^8*111)/111=3^8 что требовалось доказать
3) a=9^7+9^6+9^5=(3^2)^7+(3^2)^6+(3^2)^5=3^14+3^12+3^10=3^10*(3^4+3^2+1)=3^10*(81+9+1)=3^10*91.
b=3^10-3^9+3^8=3^8*(3^2-3+1)=3^8*(9-3+1)=3^8*7
(3^10*91)/(3^8*7)=3^2*91/7=9*13=117 что и требовалось доказать а делится на b
На ребрах ВС, АD и СD возьмем точки М, N и К - середины этих ребер соответственно. Соединим точки M,N и К. Получили треугольник MNK, в котором стороны MN=6 (дано), МК=10 и NK=8 (как средние линии треугольников ВСD и АСD, лежащие против сторон ВD и АС соответственно).
Это Пифагоров треугольник с соотношением сторон 3:4:5, то есть <MNK=90°.
Прямые АС и ВD - скрещивающиеся, так как не лежат в одной плоскости и
не параллельны. Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.
В нашем случае это <MKN, так как NK||AC, а МК||ВD.
Пересекаются прямые NK и МК в точке К.
Синус <MKN равен отношению противолежащего катета к гипотенузе, то есть Sin(<MNK)=MN/MK=6/10=0,6.
ответ: угол между прямыми АС и ВD равен arcsin0,6.