М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mariazeleznak2
mariazeleznak2
09.04.2023 15:26 •  Математика

ABCD - прямоугольник, О – точка пересечения диагоналей, OF - перпендикуляр к плоскости ABC. Найдите расстояние от точки F до стороны AB, если AB=8, BC=6, OF=4.

👇
Открыть все ответы
Ответ:
uliana3murrr
uliana3murrr
09.04.2023
Обозначим центр сферы O, радиус сферы R, а плоскость сечения α.
Обозначим центр окружности сечения O' и ее радиус r.
Расстояние от O до O' равно ρ.
Длина окружности сечения L равна 2πr.

Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы.
Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R.
При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.

Рассмотрим треугольник OO'A.
OO' ⊥ AB, OA = R, O'A = r, OO' = ρ

По теореме Пифагора имеем равенство: R² = r² + ρ² ⇒ r² = R² - ρ².

r² = 14² - 8² = (14-8)(14+8) = 6*22 = 12*11.
r = √(12*11) = 2√33.

L = 2πr = 2·2√33·π = 4π√33
4,8(71 оценок)
Ответ:
VarLen20005
VarLen20005
09.04.2023

Дана функция  

 

1. Найти область определения функции и область значений функции, выявить точки разрыва, если они есть - это точка х = -1.

2. Выяснить, является ли функция четной или нечетной.

Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).

Итак, проверяем:

\frac{\left(x - 2\right)^{2}}{x + 1} = \frac{\left(- x - 2\right)^{2}}{- x + 1}

- Нет

\frac{\left(x - 2\right)^{2}}{x + 1} = - \frac{\left(- x - 2\right)^{2}}{- x + 1}

- Нет, значит, функция не является ни чётной, ни нечётной.

3. Выяснить, является ли функция периодической - нет.

4. Найти точки пересечения графика с осями координат (нули функции).

График функции пересекает ось X при f = 0

значит надо решить уравнение:

\frac{\left(x - 2\right)^{2}}{x + 1} = 0.

Решаем это уравнение.

Точки пересечения с осью X:  x_{1} = 2.

5. Найти асимптоты графика.

Уравнения наклонных асимптот обычно ищут в виде y = kx + b.  

Находим коэффициент k:  

 Находим коэффициент b:  

Получаем уравнение наклонной асимптоты: y = x - 5.

Найдем вертикальные асимптоты. Для этого определим точки разрыва:

x1 = -1

Находим пределы в точке -1. Они равны +-∞.

Поэтому точка x1 = -1  является вертикальной асимптотой.

6. Вычислить производную функции f'(x) и определить критические точки.

Приравниваем нулю производную и получаем 2 корня х = 2  и  х = -4 и четыре промежутка значений производной (с учётом разрыва функции в точке х = -1): (-∞; -4), (-4; -1), (-1; 2), (2; +∞).

Определяем знак производной на полученных промежутках:

х =       -5         -4        -3        -1       0       2            3

y' =  0,4375      0      -1,25      -        -8       0        0,4375.

7. Найти промежутки монотонности функции.

Где производная положительна - функция возрастает, где отрицательна - там убывает.  

х ∈ (-∞; -4) ∪ (2; +∞) - функция возрастает,

х ∈  (-4; -1) ∪ (-1; 2) - функция убывает.

8. Определить экстремумы функции f(x).

Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.

В точке х = -4 (знак с + на -) это максимум,

в точке х = 2 (знак с - на +) это минимум.

9. Вычислить вторую производную f''(x) = 18/(x+1)³.

10. Определить направление выпуклости графика и точки перегиба.

Так как вторая производная в области определения не может быть равной нулю, то функция не имеет перегибов.

4,8(73 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ